Structural, Optical, and Magnetic Behavior of in-situ Doped, MOCVD-Grown Ga1-xMnxN Epilayers and Heterostructures

Abstract

Dilute magnetic semiconductors (DMS) show promise as materials that can exhibit ferromagnetism at room temperature (RT). However, the nature of ferromagnetism in this material system must be well understood in order to allow intelligent design of RT spintronic devices. This work investigates the magnetic properties of the as-grown films and the effect of Mn incorporation on crystal integrity and device performance. Ga1-xMnxN films were grown by MOCVD on c-plane sapphire substrates with varying thickness and Mn concentration. Homogenous Mn incorporation throughout the films was verified with Secondary Ion Mass

Spectroscopy (SIMS), and no macroscopic second phases (MnxNy) were detected using X-ray diffraction (XRD). Superior crystalline quality in the MOCVD-grown films relative to Mn-implanted GaN epilayers was confirmed via Raman spectroscopy. Vibrating sample magnetometry (VSM) measurements showed an apparent room temperature ferromagnetic hysteresis in the as-grown epiayers. Similarly, a marked decrease in the magnetization was observed with annealing and silicon doping, as well as in post-growth annealed Mg-codoped samples. The observed decrease in üB per Mn with increasing Mn concentration is explained by Raman spectroscopy results, which show a decrease in long-range lattice ordering and an increase in nitrogen vacancy concentration with increasing Mn concentration. Light emitting diodes (LEDs) containing a Mn-doped active region have also been produced. Devices were fabricated with different Mn-doped active layer thicknesses, and I-V characteristics show that the devices become more resistive as thickness of the Mn-doped active layer increases. The electroluminescence of the Mn-containing layers is red-orange vice blue. Under ultraviolet illumination, there is an increase in the measured VSM signal from Mn-containing layers.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    T. Dietl, H. Ohno, et al., Science 287 (2000) 1019.

    CAS  Article  Google Scholar 

  2. [2]

    S. A. Wolf, D. D. Awschalom, et al., Science 294 (2001) 1488.

    CAS  Article  Google Scholar 

  3. [3]

    K. C. Ku, S. J. Potashnik, et al., Appl. Phys. Lett. 82 (2003) 2302.

    CAS  Article  Google Scholar 

  4. [4]

    Y.-J. Zhao, P. Mahadevan, et al., Appl. Phys. Lett. 84 (2004) 3753.

    CAS  Article  Google Scholar 

  5. [5]

    K. Sato and H. Katayama-Yoshida, Semicond. Sci. Technol. 17 (2002) 367.

    CAS  Article  Google Scholar 

  6. [6]

    J. Kang, K. J. Chang, et al., Journal of Superconductivity 18 (2005) 55.

    CAS  Article  Google Scholar 

  7. [7]

    V. I. Litvinov, Phys. Rev. B 72 (2005) 195209.

    Article  Google Scholar 

  8. [8]

    M. L. Reed, N. A. El-Masry, et al., Appl. Phys. Lett. 79 (2001) 3473.

    CAS  Article  Google Scholar 

  9. [9]

    N. Theodoropoulou, A. F. Hebard, et al., Appl. Phys. Lett. 78 (2001) 3475.

    CAS  Article  Google Scholar 

  10. [10]

    M. E. Overberg, C. R. Abernathy, et al., Appl. Phys. Lett. 79 (2001) 1312.

    CAS  Article  Google Scholar 

  11. [11]

    M. H. Kane, A. Asghar, et al., Semicond. Sci. Technol. 20 (2005) L5.

    CAS  Article  Google Scholar 

  12. [12]

    S. Dhar, O. Brandt, et al., Appl. Phys. Lett. 82 (2003) 2077.

    CAS  Article  Google Scholar 

  13. [13]

    R. Giraud, S. Kuroda, et al., Europhysics Letters 65 (2004) 553.

    CAS  Article  Google Scholar 

  14. [14]

    B. K. Rao and P. Jena, Phys. Rev. Lett. 89 (2002) 185504.

    CAS  Article  Google Scholar 

  15. [15]

    Y. L. Soo, S. Kim, et al., Appl. Phys. Lett. 84 (2004) 481.

    CAS  Article  Google Scholar 

  16. [16]

    M. Yokoyama, H. Yamaguchi, et al., J. Appl. Phys. 97 (2005) 10D317.

    Article  Google Scholar 

  17. [17]

    F. E. Arkun, M. J. Reed, et al., Appl. Phys. Lett. 85 (2004) 3809.

    CAS  Article  Google Scholar 

  18. [18]

    S. Sonoda, I. Tanaka, et al., (2005) Submitted.

  19. [19]

    M. J. Reed, F. E. Arkun, et al., Appl. Phys. Lett. 86 (2005) 102504.

    Article  Google Scholar 

  20. [20]

    U. Haboeck, H. Siegle, et al., Physica Status Solidi C 0 (2003) 1710.

    CAS  Article  Google Scholar 

  21. [21]

    W. Limmer, W. Ritter, et al., Appl. Phys. Lett. 72 (1998) 2589.

    CAS  Article  Google Scholar 

  22. [22]

    A. Sato, K. Azumada, et al., Appl. Phys. Lett. 87 (2005) 021907.

    Article  Google Scholar 

  23. [23]

    H. Munekata, Physica E 25 (2004) 160.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

M.S. gratefully acknowledges the support of the Alexander von Humboldt-Foundation. One author (M.K.) was supported by a graduate fellowship from the National Science Foundation. This work was supported in part by grants from the National Science Foundation (ECS#0224266, U. Varshney) and the Air Force Office of Scientific Research.

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kane, M.H., Fenwick, W., Strassburg, M. et al. Structural, Optical, and Magnetic Behavior of in-situ Doped, MOCVD-Grown Ga1-xMnxN Epilayers and Heterostructures. MRS Online Proceedings Library 892, 504 (2005). https://doi.org/10.1557/PROC-0892-FF07-04-EE05-04

Download citation