Properties of InN grown by High-Pressure CVD


Group III-nitride compound semiconductors (e.g. AlN-GaN-InN) have generated considerable interest for use in advanced optoelectronic device structures. The fabrication of multi-tandem solar cells, high-speed optoelectronics and solid state lasers operating at higher energy wavelengths will be made possible using (Ga1-y-xAlyInx)N heterostructures due to their robustness against radiation and the wide spectral application range. To date, the growth of indium rich (In1-xGax)N films and heterostructures remains a challenge, primarily due to the large thermal decomposition pressures in indium rich group III-nitride alloys at the optimum growth temperatures. In order to control the partial pressures during the growth process of InN and related alloys, a unique high-pressure chemical vapor deposition (HPCVD) system with integrated real-time optical monitoring capabilities has been developed. We report initial results on InN layers grown at temperatures as high as ~850°C with reactor pressures around 15 bar. Such process conditions are a major step towards the fabrication of indium rich group III-nitride heterostructures that are embedded in wide band gap group III-nitrides. Real-time optical characterization techniques are applied in order to study the gas phase kinetics and surface chemistry processes during the growth process.

For an ammonia to TMI precursor flow ratio below 500, multiple phases with sharp XRD features are observed. Structural analysis perform by Raman scattering techniques indicates that the E2 high mode improves as NH3:TMI ratio is decreased to below 500. Optical characterization of these InN layers indicates that the absorption edge shifts from down from 1.85 eV to 0.7 eV. This shift seems to be caused by a series of localized absorption centers that appear as the indium to nitrogen stoichiometry varies. This contribution will correlate the process parameters to results obtained by XRD, Raman spectroscopy and optical spectroscopy, in order to assess the InN film properties.

This is a preview of subscription content, access via your institution.


  1. [1]

    T. Schmidtling, M. Drago, U. W. Pohl and W. Richter, J. Cryst. Growth 248, 523–527 (2003).

    CAS  Article  Google Scholar 

  2. [2]

    T. Tsuchiya, M. Ohnishi, A. Wakahara and A. Yoshida, J. Cryst. Growth 220(3) 191–196 (2000).

    CAS  Article  Google Scholar 

  3. [3]

    V.Yu. Davydov, A.A. Klochikhin, V.V. Emtsev, D.A. Kurdyukov, S.V. Ivanov, V.A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A.V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, E.E. Haller, Physica Status Solidi B, 234(3) 787–795 (2002).

    CAS  Article  Google Scholar 

  4. [4]

    T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, and S. Ohoya, J. Crystal Growth 227-228 pp. 481–485 (2001).

    Article  Google Scholar 

  5. [5]

    V. Yu. Davydov and A. A. Klochikhin, Semiconductors 38(8), 861–898 (2004).

    CAS  Article  Google Scholar 

  6. [6]

    A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94(5), 2779–2808 (2003).

    CAS  Article  Google Scholar 

  7. [7]

    E. Kurimoto, M. Hangyo, H. Harima, M. Yoshimoto, T. Yamaguchi, T. Araki, Y. Nanishi, K. Kisoda, Appl. Phys. Lett. 84(2), 212–214 (2004).

    CAS  Article  Google Scholar 

  8. [8]

    K.S.A. Butcher and T.L. Tansley, Superlattices and Microstructures 38(1), 1–37 (2005).

    CAS  Article  Google Scholar 

  9. [9]

    Indium-nitride growth by HPCVD: Real-time and ex-situ characterization,” N. Dietz, book chapter 6 in “III-Nitrides Semiconductor Materials”, ed. Z.C. Feng, Imperial College Press (ICP) pp. 203–235 (2005).

    Google Scholar 

  10. [10]

    N. Dietz, M. Alevli, V. Woods, M. Strassburg, H. Kang, and I. T. Ferguson, phys. stat. sol. (b) 242(15), 2985–2994 (2005).

    CAS  Article  Google Scholar 

  11. [11]

    N. Dietz, M. Alevli, H. Kang, M. Straßburg, V. Woods, I. T. Ferguson, C. E. Moore and B. H. Cardelino. Proc. SPIE Vol. 5912, ISBN 0-8194-5917-8, pp. 78–85 (2005).

    Google Scholar 

  12. [12]

    G. A. Hebner, K. P. Killeen and R. M. Biefeld, J. Crystal Growth, 98(3) 293–301 (1989).

    CAS  Article  Google Scholar 

  13. [13]

    M. C. Johnson, K. Poochinda, N. L. Ricker, J. W. Rogers Jr. and T. P. Pearsall, J. Crystal Growth 212(1-2), 11–20 (2000).

    CAS  Article  Google Scholar 

  14. [14]

    N. Dietz, V. Woods, S. McCall and K.J. Bachmann, Proc. Microgravity Conf. 2002, NASA/CP-2003-212339, 169–181 (2003).

    Google Scholar 

  15. [15]

    N. Dietz, M. Strassburg and V. Woods, J. Vac. Sci. Technol. A 23(4), 1221–1227 (2005).

    CAS  Article  Google Scholar 

  16. [16]

    V. Y. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov and T. Inushima, Applied Physics Letters 75, 3297–3299 (1999).

    CAS  Article  Google Scholar 

  17. [17]

    V. Yu. Davydov and A. A. Klochikhin, Semiconductors 38(8), 861–898 (2004).

    CAS  Article  Google Scholar 

  18. [18]

    D.B. Haddad, J.S. Thakur, V.M. Naik, G.W. Auner, R. Naik, and L.E. Wenger, Mat. Res. Soc. Symp. Proc. 743, L11.22 (2003).

    Article  Google Scholar 

Download references


This work was supported by NASA grant NAG8-1686 and GSU-RPE.

Author information



Corresponding author

Correspondence to Nikolaus Dietz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alevli, M., Durkaya, G., Woods, V. et al. Properties of InN grown by High-Pressure CVD. MRS Online Proceedings Library 892, 602 (2005).

Download citation