High Power AlGaN/GaN Schottky Barrier Diode with 1000 V Operation


We investigated an AlGaN/GaN Schottky barrier diode (SBD) with a field plate structure for a high breakdown voltage. The AlGaN/GaN heterostructure was grown by MOCVD. The AlGaN buffer was grown on the Si (111) substrate and Al0.25Ga0.75N (25 nm)/ GaN (1000 nm) was grown on the buffer layer. The AlGaN/GaN heterostructure without any crack was obtained. After that, a Schottky barrier diode was fabricated using an AlGaN/GaN heterostructure. In order to obtain a high breakdown voltage, a gate field plate structure was used. SiO2 was formed on the AlGaN layer using a plasma chemical vapor deposition. The Schottky electrode of Ni/Au was partially deposited on the SiO2 film towards the ohmic region. The length of field plate structure was also changed to investigate the effect. Ti/Al-silicide was used for an ohmic electrode of SBD. The contact resistance of ohmic electrodes was 8E-6 ohmcm2.

The current-voltage characteristics of an AlGaN/GaN SBD were measured. The reverse breakdown voltage of the diode was also over 1000 V and the reverse leakage current was below 1.5E–6 A/mm.

This is a preview of subscription content, access via your institution.


  1. [1]

    T.P. Chow, R. Tyagi, IEEE Trans Electron Devices, 41, 1481 (1994).

    CAS  Article  Google Scholar 

  2. [2]

    O. Akutas, Z.F. Fan, S.N. Mohammad, A.E. Botchkarev, H. Morkoc, Appl Phys Lett, 69, 3872 (1996).

    Article  Google Scholar 

  3. [4]

    S. Yoshida, J. Suzuki, Jpn. J. Appl. Phys. Lett., 37, 482 (1998).

    Article  Google Scholar 

  4. [5]

    S. Yoshida, J. Suzuki, Jpn J Appl Phys Lett, 38, 851 (1999).

    Article  Google Scholar 

  5. [6]

    S. Yoshida, H. Ishii, Phys. Status Solidi (a), 188, 243 (2001).

    CAS  Article  Google Scholar 

  6. [8]

    S. Yoshida, H. Ishii, J. Li, Mater. Sci. Forum, 389, 1527 (2002).

    Article  Google Scholar 

  7. [9]

    S. Yoshida, D. Wang, M. Ichikawa, Jpn. J. Appl. Phys., 41, 820 (2002).

    Article  Google Scholar 

  8. [10]

    A.P. Zhang, J.W. Johson, F. Ren, J. Han, A.Y. Polyakov, N.B. Sminov, A.V. Govokov, J.M. Redwing, K.P. Lee, and S.J. Pearton, Appl. Phys. Lett., 78, 823 (2001).

    CAS  Article  Google Scholar 

  9. [11]

    J.W. Johson, A.P. Zhang, W.-B. Luo, F. Ren, S.J. Pearton S.S. Park, Y.J. Park, and J. I. Chyi, IEEE Trans. Electron Devices, 49, 32 (2002).

    Article  Google Scholar 

  10. [12]

    S. Yoshida, N. Ikeda, J. Li, T. Wada, and H. Takehara, Proc. 16th Int'l Symp. Power Semiconductor Devices and IC's (ISPSD 04), 323 (2004).

    Google Scholar 

  11. [13]

    S. Yoshida, J. Li, N. Ikeda, and K. Hataya, Phys. Stat. Solid. (a), 202, 2602 (2005).

    Google Scholar 

  12. [14]

    S. Yoshida, N. Ikeda, J. Li, T. Wada, and H. Takehara, IEICE Trans. Electron., E88-C, 690 (2005).

    Article  Google Scholar 

  13. [15]

    S. Yoshida, N. Ikeda, J. Li, T. Wada, and H. Takehara, Proc. Matt. Res. Soc. Symp., 831, 343 (2005).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Seikoh Yoshida.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshida, S., Ikeda, N., Li, J. et al. High Power AlGaN/GaN Schottky Barrier Diode with 1000 V Operation. MRS Online Proceedings Library 892, 502 (2005). https://doi.org/10.1557/PROC-0892-FF05-02

Download citation