Organic Field-Effect Transistors, Inverters, and Logic Circuits on Gate Electrets

Abstract

By incorporating dielectrics with stored electric fields and organic semiconductors, new organic electronic components such as circuits with controlling voltages “restored” for transistor tuning can be developed. We have successfully used excellent electret materials including charged and surface-treated silicon dioxide (SiO2) and silsesquioxane (SSQ) polymers as the dielectric layer in organic field-effect transistors (OFETs). Charge injection and quasipermanent charge storage induce threshold voltage shifts and current modulation, which results from the built-in electric fields in the conduction channels. Static and dynamic characteristics of organic thin-film transistors (OTFTs) such as charging conditions and voltage/current retention were evaluated. In addition, self-assembled monolayers (SAMs) of dipolar molecules have been utilized in the dielectric layer, with different mechanisms but similar effects compared to charged dielectrics. We also present new OFET unipolar inverters, comprised of only two simple OTFTs with enhancement-mode driver and depletion-mode load to implement full-swing organic logic circuits for process simplification of electronic components in organic electronics.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Facchetti, M.-H. Yoon, and T. J. Marks, Adv. Mater. 17, 1705 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    H. Sirringhaus, Adv. Mater. 17, 2411 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    H.E. Katz, X.M. Hong, A. Dodabalapur, and R. Sarpeshkar, J. Appl. Phys. 91, 1572 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    M. Mushrush, A. Facchetti, M. Lefenfeld, H.E. Katz, and T.J. Marks, J. Am. Chem. Soc. 125, 9414 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    R. Schwödiquer, S. Bauer, B. Singh, N. Marjanovic, and N.S. Sariciftci, IEEE Proc. of 12th Int’l Symp. on Electrets (ISE 12), 459 (2005), and references therein.

  6. 6.

    G.M. Sessler (ed.), Electrets 3rd Edition (Laplacian Press, CA, 1998), vol. 1.

    Google Scholar 

  7. #

    R. Gerhard-Mulhaupt (ed.), Electrets 3rd Edition (Laplacian Press, CA, 1999), vol. 2.

  8. 7.

    H.S. Nalwa (ed.), Ferroelectric Polymers: Chemistry, Physics, and Applications (M. Dekker, Inc., New York, 1995).

    Google Scholar 

  9. 8.

    J.F. Scott, Ferroelectrics Reviews (eds: G.W. Taylor and A.S Bhalla ), 1, 1 (1998);

    Google Scholar 

  10. #

    J. F. Scott, Ferroelectric Memories (Springer, Berlin, 2000).

  11. 9.

    R.C.G. Naber, et al., Nature Material 4, 243 (2005).

    CAS  Article  Google Scholar 

  12. 10.

    A.S. Sedra & K.C. Smith Microelectronic Circuits (Oxford University Press, London, 2003).

    Google Scholar 

  13. 11.

    S.M. Sze Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  14. 12.

    D. Knipp, R.A. Street, A. Völkel, and J. Ho, J. Appl. Phys. 93, 347(2003).

    CAS  Article  Google Scholar 

  15. 13.

    A. Salleo, F. Endicott, and R.A. Street, Appl. Phys. Lett. 86, 263505 (2005).

    Article  Google Scholar 

  16. 14.

    H.E. Katz and C. Huang, Process for Polarized-gate Semiconductor Device, US Provisional Patent, 4822 (2005).

  17. 15.

    G.M. Sessler and J.E. West, J. Appl. Phys. 43, 933 (1972).

    Google Scholar 

  18. 16.

    H.O. Jacobs and G.M. Whitesides, Science 291, 1763 (2001).

    CAS  Article  Google Scholar 

  19. 17.

    Z.N. Bao, V. Kuck, J.A. Rogers, M.A. Paczkowski, Adv. Funct. Mater. 12, 526 (2002).

    CAS  Article  Google Scholar 

  20. 18.

    A.R. Brown, A. Pomp, C.M. Hart, and D.M. de Leeuw, Science 270, 972 (1995);

    CAS  Article  Google Scholar 

  21. #

    A.R. Brown, C.P. Jarrett, D.M. de Leeuw, and M. Matters, Synthetic Metals 88, 37 (1997).

    CAS  Article  Google Scholar 

  22. 19.

    H. Klauk, D.J. Gundlach, and T.N. Jackson, IEEE Electron Device Letters 20, 289 (1999).

    CAS  Article  Google Scholar 

  23. 20.

    G.H. Gelinck, et al., Nature Materials 3, 106 (2004).

    CAS  Article  Google Scholar 

  24. 21.

    K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A.N. Rashid, and G. Schitter, J. Appl. Phys. 96, 6431 (2004).

    CAS  Article  Google Scholar 

  25. 22.

    C. Huang, Ph.D. Thesis, The Pennsylvania State University (2004).

  26. 23.

    C. Huang, K. Ren, S. Zhang, F. Xia, Q.M. Zhang, and J. Li, IEEE Proc. of 12th Int’l Symp. on Electrets (ISE 12), 91 (2005).

  27. 24.

    C. Huang and Q.M. Zhang, in Smart Structures and Materials 2004: Smart Electronics, MEMS, BioMEMS, and Nanotechnology (ed: V.K. Varadan ), Proc. of SPIE, vol. 5389, 274 (2004);

    Google Scholar 

  28. #

    C. Huang, B. Bai, B. Chu, J. Ding, and Q.M. Zhang, Mat. Res. Soc. Symp. Proc. vol. 820, O8.12(1–6) (2004).

    Google Scholar 

  29. 25.

    F. Carpi and D. De Rossi, IEEE Trans. Inf. Technol. Biomed. 9, 295 (2005).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cheng Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, C., James, E.W. & Howard, E.K. Organic Field-Effect Transistors, Inverters, and Logic Circuits on Gate Electrets. MRS Online Proceedings Library 889, 807 (2005). https://doi.org/10.1557/PROC-0889-W08-07

Download citation