Interfaces and Space Charge in Polymeric Insulating Materials


In this paper, the influence of interface between electrode and polymer or polymer and polymer on space charge dynamics has been studied. Planar samples of low density polyethylene (LDPE) were subjected to high dc electric stresses for extended periods of time and space charge measurements were taken using the pulsed electroacoustic (PEA) technique. Common electrode materials used in either laboratory or power cable industry were selected (i.e. aluminium (Al), gold (Au) and carbon loaded XLPE (Sc)). Experimental results demonstrated that charge injection processes take place in all cases once the applied electric stress has exceeded a threshold value. However, the amount of charge and polarity of the dominant injected charges showed significant dependence on the electrode materials (under the same applied electric stress). Having establishing the influence of electrode materials on charge accumulation, our attention was then focused on the effect of polymer/polymer interface on charge dynamics. Unlike our previous approach where two different polymeric materials were used, this time the polymer/polymer interface was formed by using two layer of LDPE films cut from the same sheet. Sc and Al were used as electrodes to form different combinations. The results clearly indicated that the interface between two layers of LDPE acts as traps for electrons but not for positive charge carriers. The charge distribution in the bulk of the sample strongly depends on the electrode materials.

This is a preview of subscription content, access via your institution.


  1. 1

    Y. Li, T. Takada, H. Miyata and T. Niwa, J. Appl. Phys. 74 2725–2730 (1993).

    CAS  Article  Google Scholar 

  2. 2

    T. Tanaka, S. Hayashi and K. Shibayama, J. Appl. Phys. 48 3478–3483 (1977).

    CAS  Article  Google Scholar 

  3. 3

    T. Tanaka, S. Hayashi, S. Hirabayashi and K, Shibayama, J. Appl. Phys. 49 2490–2493 (1978).

    CAS  Article  Google Scholar 

  4. 4

    Y. Suzuoki, G. Cai, T. Mizutani and M. Ieda, Jpn. J. Appl. Phys. 21 1759–1761 (1982).

    CAS  Article  Google Scholar 

  5. 5

    T. Mizutani, M. Ieda, S. Ochiai and M. Ito, J. Electrostat. 12 427–433 (1982).

    CAS  Article  Google Scholar 

  6. 6

    N. Hozumi, T. Okamoto and T. Imajo, Proc. 8th ISH, Yokohama, Japan 111–114 (1993).

    Google Scholar 

  7. 7

    G. C. Montanari and D. Fabiani, IEEE Trans. on DEI 7 322–328 (2000).

    Article  Google Scholar 

  8. 8

    Y. Zhang, J. Lewiner, C. Alquie and N. Hampton, IEEE Trans. on DEI 4 778–783 (1997).

    Google Scholar 

  9. 9

    L. A. Dissado, G. Mazzanti and G. C. Montanari, IEEE Trans. on DEI 4 496–506 (1997).

    CAS  Article  Google Scholar 

  10. 10

    G. Chen, M. A. Brown, A. E. Davies, C. Rochester and I. Doble, 9th Intel. Symp on Electret, Shanghai, China, 285–290 (1996).

    Google Scholar 

  11. 11

    K. Fukunaga, T. Maeno, Y. Hashimuto and K. Suzuki, IEEE Trans.on DEI 5 276–280 (1998).

    CAS  Article  Google Scholar 

  12. 12

    J. C. Maxwell, “A treatise on electricity and magnetism”, Clarendon, (1881).

    Google Scholar 

  13. 13

    T. Tanaka and M. Uchiumi, CEIDP, Austin, UAS, 472–475 (1999).

  14. 14

    S. Boggs, D. H. Damon, J. Hjerrild, J. T. Holboll and M. Henriksen, IEEE Trans Power delivery 16 456–461 (2001).

    Article  Google Scholar 

  15. 15

    G. Chen, Proc. 2nd Intl Conf. ICMEP, Chongqing, China, 133–136 (2003)

    Google Scholar 

  16. 16

    G. Mazzanti, G. C. Montanari and L. A. Dissado, IEEE Trans. on DEI 12 876–890 (2005).

    Article  Google Scholar 

  17. 17

    G. Chen, M. Fu, X. Z. Liu and L. S. Zhong, J. Appl. Phys. 97 083713 (2005).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to G. Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, G. Interfaces and Space Charge in Polymeric Insulating Materials. MRS Online Proceedings Library 889, 803 (2005).

Download citation