Bulk and Interface Charging Mechanisms in Organic Semiconductor-Gate Dielectric Bilayers

Abstract

Since the first reports of charge storage in the gate dielectrics of organic semiconductors, several groups have proposed charge-storing dielectrics that become polarized through varied mechanisms, and have offered various explanations for observed charge storage phenomena. These groups were concerned either with nonvolatile memories as an application, or with controlling hysteresis in conventional OFETs. This manuscript describes measurements of surface charging and OFET threshold voltage shift for a case where charge is clearly stored in the dielectric. The magnitude and stability of the charge storage depend on the hydrophobicity of the dielectric and the charge deposition process. We focus on SiO2 as the dielectric and use a thiophene oligomer or hexadecafluoro-copper phthalocyanineas semiconductor. In one case, the phthalocyanine was inverted from electron- to hole-carrying, enabling a complementary device to be made from a single semiconductor.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C.R. Kagan & P. Andry Thin-Film Transistors (Marcel Dekker, New York, 2003).

    Google Scholar 

  2. 2.

    C.D. Dimitrakopoulos & P.R.L. Malenfant Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    A.S. Sedra & K.C. Smith Microelectronic Circuits (Oxford University Press, London, 2003).

    Google Scholar 

  4. 4.

    A. Dodabalapur, H.E. Katz, L. Torsi & R. C. Haddon Organic heterostructure field-effect transistors. Science 269, 1560–1562 (1995).

    CAS  Article  Google Scholar 

  5. 5.

    M. Ahles, R. Schmechel & H. Seggern Complementary inverter based on interface doped pentacene. Appl. Phys. Lett. 87, 113505 (2005).

    Article  Google Scholar 

  6. 6.

    M.-H. Yoon, S.A. DiBenedetto, A. Facchetti & T.J. Marks Organic thin-film transistors based on carbonyl-functionalized quaterthiophenes: high mobility N-channel semiconductors and ambipolar transport. J. Am. Chem. Soc. 127, 1348–1349 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    E.J. Meijer, D.M. De Leeuw, S. Setayesh, E. Van Veenendaal, B.-H. Huisman, P.W.M. Blom, J.C. Hummelen, U. Scherf & T.M. Klapwijk Solution-processed ambipolar organic field-effect transistors and inverters. Nat. Mater. 2, 678–682 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    L.-L. Chua, J. Zaumsell, J.-F. Chang, E.C.-W. Ou, P.K.-H. Ho, H. Sirringhaus & R.H. Friend General observation of n-type field-effect behavior in organic semiconductors. Nature 434, 194–199 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    S.M. Sze Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  10. 10.

    G.M. Sessler Electrets 3rd Edition (Laplacian Press, CA, 1999), vol. 1.

    Google Scholar 

  11. 11.

    R. Kressmann, G.M. Sessler & P. Günther Space-charge electrets. in Electrets, 3rd Edition (ed. R. Gerhard-Mulhaupt ) (Laplacian Press, CA, 1999), vol. 2, ch. 9.

    Google Scholar 

  12. 12.

    Z. Bao, A.J. Lovinger & J. Brown New air-stable n-channel organic thin film transistors. J. Am. Chem. Soc. 120, 207–208 (1998).

    CAS  Article  Google Scholar 

  13. 13.

    H.E. Katz, X.M. Hong, A. Dodabalapur & R. Sarpeshkar Organic field-effect transistors with polarizable gate insulators. J. Appl. Phys. 91, 1572–1576 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    M. Mushrush, A. Facchetti, M. Lefenfeld, H.E. Katz, T.J. Marks Easily processable phenylene-thiophene-based organic field-effect transistors and solutionfabricated nonvolatile transistor memory elements. J. Am. Chem. Soc. 125, 9414–9423 (2003)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. E. Katz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katz, H.E., Huang, C. & West, J. Bulk and Interface Charging Mechanisms in Organic Semiconductor-Gate Dielectric Bilayers. MRS Online Proceedings Library 889, 802 (2005). https://doi.org/10.1557/PROC-0889-W08-02

Download citation