Applications of Smart Materials in the Development of High Performance Biosensors

Abstract

High performance biosensors are urgently needed from medical diagnosis, to food safety/security, to the war on bio-terrorist. The smart materials play an important role in the development of high performance sensor platform. Biosensors based on microcantilevers have very high sensitivity. The microcantilevers made of different materials, such silicon, piezoelectric and magnetostrictive materials, are discussed and compared in this paper. The magnetostrictive-based microcantilevers exhibit the best performance among all microcantilevers. A new sensor platform – magnetostrictive particles (MSPs) – is reported. The advantages of MSPs over microcantilevers are experimentally demonstrated. The MSPs are wireless/remote sensors, which makes it is possible to employ the MSP-based biosensors in different environments/media. The fabrication of MSPs in micro to nano-scale is reported. Compared with the microcantilevers, MSPs exhibit a better mass sensitivity and a higher Q value, which make the MSPs a much higher overall sensitivity.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Leonard, S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty and R. O’Kennedy, Enzyme and Microbial Tech. 32, 3 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    O. Tamarin, C. Dejous, D. Rebiere, J. Pistre, S. Comeau, D. Moynet and J. Bezian, Sens. Actuators B91, 275 (2003).

    Article  Google Scholar 

  3. 3.

    R. Raiteri, M. Grattarola, H. Butt and P. Skladal, Sens. Actuators B 79, 115 (2001).

    CAS  Article  Google Scholar 

  4. 4.

    V.A. Petrenko, and V.J. Vodyanoy and J. Microbio . Meth. 53(20), 243 (2003).

    Google Scholar 

  5. 5.

    N.V. Lavrik, M.J. Sepaniak and P.G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    J. Mertz, O. Marti and J. Mlynek, Appl. Phys. Lett. 62, 2344, (1993).

    Article  Google Scholar 

  7. 7.

    A. Mehta, S. Cherian, D. Hedden and T. Thundat, Appl. Phys. Lett. 78, 637 (2001).

    Article  Google Scholar 

  8. 8.

    B. Ilic, D. Czaplewsli, H. G. Craighead, P. Neuzil, C. Campagnolo and C. Batt, Appl. Phys. Lett. 77, 450 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    B. Ilic, H.G. Craighead, S. Krylov, W. Senaratne, C. Ober and P. Neuzil, J. Appl. Phys. 95, 3694 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    C. Ziegler, Anal Bioanal. Chem. 379, 946 (2004).

    CAS  Google Scholar 

  11. 11.

    J.W. Yi, W.Y. Shih and W. H. Shih, J. Appl. Phys. 91, 1680 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    G.A. Campbell and R. Mutharasan, Sens. Actuators A 122, 326 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    S.Q. Li, L. Orona, Z.M. Li, Z.-Y. Cheng, Appl. Phys. Lett. (2006).

    Google Scholar 

  14. 14.

    Metglas® Solution, Honeywell (http://www.metglas.com/products/).

  15. 15.

    Guide to modern piezoelectric ceramics, Morgan Matroc, Inc.

  16. 16.

    S.Q. Li, L. Orona, L.L. Fu, Z.-Y. Cheng, MRS Proc. Vol. (2005).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Z.-Y. Cheng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheng, ZY. Applications of Smart Materials in the Development of High Performance Biosensors. MRS Online Proceedings Library 888, 1006 (2005). https://doi.org/10.1557/PROC-0888-V10-06

Download citation