Magnetic Aging


Thermally activated magnetization reversal is of great importance in areas such as permanent magnetism and magnetic recording. In spite of many decades of scientific research, the phenomenon of slow magnetization dynamics has remained partially controversial. It is now well-established that the main mechanism is thermally activated magnetization reversal, as contrasted to eddy currents and structural aging, but the identification of the involved energy barriers remains a challenge for many systems. Thermally activated slow magnetization processes proceed over energy barriers whose structure is determined by the micromagnetic free energy. This restricts the range of physically meaningful energy barriers. An analysis of the underlying micromagnetic free energy yields power-law dependences with exponents of 3/2 or 2 for physically reasonable models, in contrast to arbitrary exponents m and to 1/H-type laws.

This is a preview of subscription content, access via your institution.


  1. [1]

    R. Becker and W. Döring, Ferromagnetismus (Springer, Berlin, 1939).

    Google Scholar 

  2. [2]

    D. J. Sellmyer, M. Yu, R. A. Thomas, Y. Liu, and R. D. Kirby, Phys. Low-Dim. Struct. 1–2, 155 (1998).

    Google Scholar 

  3. [3]

    D. Givord and M. F. Rossignol, in: Rare-earth iron permanent magnets, Ed.: J. M. D. Coey (University Press, Oxford, 1996) p. 218.

    Google Scholar 

  4. [4]

    R. Skomski and J. M. D. Coey, Permanent Magnetism, Institute of Physics, Bristol 1999.

  5. [5]

    R. H. Victora, Phys. Rev. Lett. 63, 457 (1989).

    CAS  Article  Google Scholar 

  6. [6]

    R. Skomski, J. Phys.: Condens. Matter 15 (2003) R841.

    CAS  Google Scholar 

  7. [7]

    J. Moritz, B. Dieny, J.P Nozières, Y. Pennec, J. Camarero, and S. Pizzini, Phys. Rev. B 71, 100402 (2005).

    Article  Google Scholar 

  8. [8]

    R. Skomski, in: Rare-Earth-Iron Permanent Magnets, Ed.: J. M. D. Coey, University Press, Oxford 1996, p. 178–217.

    Google Scholar 

  9. [9]

    L. Néel, J. de Phys. Rad. 11, 49 (1950).

    Article  Google Scholar 

  10. [10]

    T. Egami, Phys. Stat. Sol. (a) 20, 157 (1973); (b) 57, 211 (1973).

    CAS  Article  Google Scholar 

  11. [11]

    R. Skomski, D. Leslie-Pelecky, R. D. Kirby, A. Kashyap, and D. J. Sellmyer, Scripta Mater. 48, 857 (2003).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ralph. Skomski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Skomski, R., Zhou, J., Kirby, R.D. et al. Magnetic Aging. MRS Online Proceedings Library 887, 8870707 (2006).

Download citation