Investigations of dc electrical properties in electron-beam modified carbon nanotube films: single- and multiwalled

Abstract

Carbon nanotubes (CNTs) in the family of nanostructured carbon materials are of great interest because of several unique physical properties. For space applications, it needs to be shown that CNTs are physically stable and structurally unaltered when subjected to irradiation becomes indispensable. The CNT films were grown by microwave Carbon nanotubes (CNTs) in the family of nanostructured carbon materials are of great interest because of several unique physical properties. For space applications, it needs to be shown that CNTs are physically stable and structurally unaltered when subjected to irradiation becomes indispensable. The CNT films were grown by microwave plasma-assisted chemical vapor deposition (MWCVD) technique using Fe as catalyst. Synthesis of both single- and multiwalled CNTs (SW and MW, respectively) were achieved by varying the thickness of the Fe catalyst layer. To investigate the influence of electron-beam irradiation, CNTs were subjected to low and/or medium energy electron-beam irradiation continuously for a few minutes to several hours. The CNT films prior to and post-irradiation were assessed in terms of their microscopic structure and physical properties to establish property-structure correlations. The characterization tools used to establish such correlations include scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS), and current versus voltage (I-V) measuring contact resistance (two-probe) and dc conductivity (four-probe) properties. Dramatic improvement in the I-V properties for single-walled (from semiconducting to quasi-metallic) and relatively small but systematic behavior for multi-walled (from metallic to more metallic) with increasing irradiation hours is discussed in terms of critical role of defects. Alternatively, contact resistance of single-walled nanotubes decreased by two orders of magnitude on prolonged E-beam exposures. Moreover, these findings provided onset of saturation and damage/degradation in terms of both the electron beam energy and exposure times. Furthermore, these studies apparently brought out a contrasting comparison between mixed semiconducting/metallic (single-walled) and metallic (multiwalled) nanotubes in terms of their structural modifications due to electron-beam irradiation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Iijima, Nature 354, 56 (1991);

    CAS  Article  Google Scholar 

  2. #

    R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science 297, 787 (2002).

    CAS  Article  Google Scholar 

  3. 2.

    M. S. Dreselhaus, G. Dresselhaus, and P. C. Eklund, in Science of Fullerenes and Carbon Nanotubes, Academic Press Inc. San Diego, Ch. 19 (1996).

  4. 3.

    J. Li and F. Banhart, Nano Lett. 4, 1143 (2004);

    CAS  Article  Google Scholar 

  5. #

    F. Banhart, Nano Lett. 1, 329 (2001).

    CAS  Article  Google Scholar 

  6. 4.

    V. H. Crespi, N. G. Chopra, M. L. Cohen, A. Zettl, and S. G. Louie, Phys. Rev. B 54, 5927 (1996);

    CAS  Article  Google Scholar 

  7. #

    N. G. Chopra, L. X. Benedict, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Nature 377, 135 (1995);

    CAS  Article  Google Scholar 

  8. #

    L. X. Benedict, V. H. Crespi, N. G. Chopra, M. L. Cohen, S. G. Louie, and A. Zettl (unpublished).

  9. 5.

    D. Ugarte, Nature 359, 707 (1992).

    CAS  Article  Google Scholar 

  10. 6.

    B. W. Smith and D. E. Luzzi, J. Appl . Phys. 90, 3509 (2001).

    CAS  Google Scholar 

  11. 7.

    S. Gupta, R. J. Patel, N. D. Smith, Mater. Res. Soc. Symp. Proc. 851, NN6.3 (2004).

    Article  Google Scholar 

  12. 8.

    S. Gupta, R. J. Patel, N. D. Smith, R. E. Giedd, and Y. Y. Wang, J. Appl. Phys. (2005) (in press).

  13. 9.

    B. M. Segal, Nantero Inc. Woburn, MA (http://www.nanotero.com).

  14. 10.

    Y. Y. Wang, S. Gupta, R. J. Nemanich, Z. J. Liu, and L. C. Qin, J. Appl. Phys. 98, 014312 (2005) and references therein;

    Article  Google Scholar 

  15. #

    S. Gupta, B. L. Weiss, B. R. Weiner, L. Pilione, A. Badzian, and G. Morell, J. Appl. Phys. 92, 3311 (2002) and references therein.

    CAS  Article  Google Scholar 

  16. 11.

    D. W. Marquardt, J. Soc. Indis. Appl. Math. 11, 431 (1963).

    Article  Google Scholar 

  17. 12.

    S. Gupta, N. D. Smith, R. J. Patel, and R. E. Giedd, J. Mater. Res. (2005) (submitted).

  18. 13.

    Y. Y. Wang, S. Gupta, and R. J. Nemanich, Appl. Phys. Lett. 85, 2610 (2004).

    Article  Google Scholar 

  19. 14.

    A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, and R. E. Smalley, Science, 275, 187 (1997).

    CAS  Article  Google Scholar 

  20. 15.

    M. S. Dresselhaus and P. C. Eklund, Adv. Phys. 49, 705 (2000).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Gupta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, S., Smith, N.D., Patel, R.J. et al. Investigations of dc electrical properties in electron-beam modified carbon nanotube films: single- and multiwalled. MRS Online Proceedings Library 887, 8870603 (2006). https://doi.org/10.1557/PROC-0887-Q06-03

Download citation