Thermoelectric properties of icosahedral cluster solids - Metallic-Covalent Bonding Conversion and Weakly Bonded Rigid Heavy Clusters -

Abstract

Boron- or Aluminum-rich icosahedral cluster solids (ICS) consist mainly of B12 or Al12 icosahedral clusters. In the ICS, a slight change of the structure or environment of icosahedral cluster can cause metallic-covalent bonding conversion, which can cause that the electrical conductivity σ and the Seebeck coefficient S can be as high as those of metals and semiconductors, respectively. Five-fold symmetry of the icosahedral cluster does not match with the translational symmetry of a crystal, consequently makes lower thermal conductivity with complex structure. For these reasons, ICS are promising candidates for thermoelectric materials.

Using MEM/Rietvelt method, we successfully obtained the clear image of the electron density distribution for alpha-AlReSi approximant crystal. The bond strength distributes widely from weak metallic to strong covalent bond, and the intra-cluster bonds are stronger than the inter-cluster ones. This means that alpha-AlReSi is located at the intermediate state of molecular, metallic- and covalent-bonded solids. Composition dependences of atomic density and quasi-lattice constant for AlPdRe icosahedral quasicrystals show the above situation is the same in the quasicrystals. The thermoelectric figure of merit Z and the effective mass m* of AlPdRe quasicrystals can be increased by strengthening the intra- and weakening the inter-cluster bonds. According to this scenario, Z was improved by a factor of 1.5 by substitution of Ru for Re.

In β-rhombohedral boron, several interstitial sites, which have space large enough to accommodate foreign atoms, are known. For the V doped sample, in which V atoms mainly occupy A1 site, the metallic-covalent bonding conversion may occur, σ is increased very much, S is decreased even to negative value and kappa is decreased. The maximum and n-type ZT value is obtained and is approaching to that of B4C, which is considered to have the largest and p-type ZT value in boron-rich ICS.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. Kimura and S. Takeuchi . in Quasicrystals: The State of the Art, 2nd ed., edited by D. P. DiVincenzo and P. J. Steinhardt (World Scientific, Singapore, 1999), p.325.

    Google Scholar 

  2. 2.

    K. Kirihara, T. Nakata, M. Takata, Y. Kubota, E. Nishibori, K. Kimura, and M. Sakata, Phys. Rev. Lett. 85, 3468 (2000); Mater. Sci. Eng., A 294–296, 492 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    K. Kirihara, T. Nagata, K. Kimura, K. Kato, E. Nishibori, M. Takata, and M. Sakata, Phys. Rev. B 68, 14205 (2003).

    Article  Google Scholar 

  4. 4.

    A. L. Pope, T. M. Tritt, M. A. Chernikov, and M. Feuerbacher, Appl. Phys. Lett. 75, 1854 (1999).

    CAS  Article  Google Scholar 

  5. 5.

    A. L. Pope, R. Schneidmiller, J. W. Kolis and T. M. Tritt, Phys. Rev. B 63, 052202 (2001).

    Article  Google Scholar 

  6. 6.

    E. Maciá, Phys. Rev. B 64, 094206 (2001).

    Article  Google Scholar 

  7. 7.

    H. Akiyama, Y. Honda, T. Hashimoto, K. Edagawa, and S. Takeuchi, Jpn. J. Appl. Phys., 32, L1003 (1993).

    CAS  Article  Google Scholar 

  8. 8.

    F. S. Pierce, S. J. Poon, and Q. Guo, Science 261, 737 (1993).

    CAS  Article  Google Scholar 

  9. 9.

    R. Tamura, H. Sawada, K. Kimura, and H. Ino, in Proceedings of the 6th International Conference on Quasicrystals, edited by S. Takeuchi and T. Fujiwara (World Scientific, Singapore, 1997), p. 631.

    Google Scholar 

  10. 10.

    J. Delahaye, J. P. Brison, and C. Berger, Phys. Rev. Lett. 81, 4204 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    R. Haberkern, K. Khedhri, C. Madel, and P. Häussler, Mater. Sci. Eng., A 294–296, 475 (2000).

    Article  Google Scholar 

  12. 12.

    K. Kirihara and K. Kimura, Phys. Rev. B 64, 212201 (2001).

    Article  Google Scholar 

  13. 13.

    K. Kirihara and K. Kimura, J. Appl. Phys. 92, 979 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    T. Nagata, K. Kirihara, and K. Kimura, J. Non-Cryst. Solids., (2003) in press.

  15. 15.

    T. Nagata, K. Kirihara, and K. Kimura, J. Appl. Phys. (2003) in press.

  16. 16.

    K. Kimura, M. Takeda, R. Fujimori, R. Tamura, H. Matsuda, R. Schmechel . and H. Werheit, J. Solid State Chem., 133, 302–309,(1997).

    CAS  Article  Google Scholar 

  17. 17.

    M. Fujimori, T. Nakata, T. Nakayama, E. Nishibori, K. Kimura, M. Takata, and M. sakata . Phys. Rew. Lett Vol. 82, No. 22, 4452–4455(1999)

    CAS  Article  Google Scholar 

  18. 18.

    K. Kirihara, K. Kimura, Sci. Tech. of Adv. Materials, 1, 227–236, (2000).

    CAS  Article  Google Scholar 

  19. 19.

    G.A. Slack, C.I. Hejna, M.F. Garbauskas and J.S. Kasper, J. Solid State Chem., 76, 52(1998).

    Article  Google Scholar 

  20. 20.

    D. Geist, R. Kloss and H. Follner, Acta Crystallogr. Sect. B 26, 1800(1970).

    CAS  Article  Google Scholar 

  21. 21.

    T. Nakayama, J. Shimizu, and K. Kimura . J. Solid State Chem., 154, 13–19(2000).

    CAS  Article  Google Scholar 

  22. 22.

    H.K. Kim, T. Nakayama, J. Shimizu and K. Kimura . 22nd International Conference on Thermoelectrics. Proceedings ICT’03, 320–323

  23. 23.

    R. Tamura, K. Kirihara, K. Kimura, and H. Ino, in Proceedings of the 5th International Conference on Quasicrystals, edited by C. Janot and R. Mosseri (World Scientific, Singapore, 1995), p. 539.

    Google Scholar 

  24. 24.

    R. Haberkern and G. Fritsch, in Proceedings of the 5th International Conference on Quasicrystals, edited by C. Janot and R. Mosseri (World Scientific, Singapore, 1995), p. 460.

    Google Scholar 

  25. 25.

    N.F. Mott and E.A. Davis, Electronic Processes in Noncrystalline Materials (Clarendon Press, Oxford, England, 1971).

    Google Scholar 

  26. 26.

    D. Emin and T. olstein, Ann. Phys. 53, 439(1969).

    Article  Google Scholar 

  27. 27.

    C. Wood and D. Emin : Phys. Rev. B29 (1984) 4582–4587.

    Article  Google Scholar 

  28. 28.

    T.L. Aselage, D. Emin, C. Wood, I. Mackinnon and I. Howard : Novel Refractory Semiconductors, Mater. Res. Soc. Symp. Proc., 97, ed. by D. Emin, T.L. Sselage and C. Wood, (Mater. Res. Soc., Pittsburgh, 1987) pp.27–32.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kaoru Kimura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kimura, K., Junpei, T.O., Kim, H. et al. Thermoelectric properties of icosahedral cluster solids - Metallic-Covalent Bonding Conversion and Weakly Bonded Rigid Heavy Clusters -. MRS Online Proceedings Library 886, 610 (2005). https://doi.org/10.1557/PROC-0886-F06-10

Download citation