Rhenium silicide as a new class of thermoelectric material


The microstructure, defect structure and thermoelectric properties of binary and some ternary Re silicide have been investigated as a new class if thermoelectric material. Binary Re silicide is identified to contain many Si vacancies, which are arranged in an ordered manner in the underlying tetragonal C11b structure so that the silicide is formulated to be ReSi1.75 with a monoclinic unit cell and contains four differently oriented domains accompanied by the twinned microstructure. The density and arrangement of Si vacancies can be controlled by ternary alloying. When the number of valence electrons of a ternary element is smaller than that for Re, the density of Si vacancies decreases with ternary additions, whereas the density of Si vacancies increases with ternary additions when the number of valence electrons of a ternary element is larger than that for Re. For both cases, the variation of the density of Si vacancies upon ternary alloying is accompanied by the introduction of the so-called shear structure.Binary ReSi1.75 exhibits nice thermoelectric properties as exemplified by the high value of dimensionless figure of merit (ZT) of 0.70 at 800 °C when measured along [001], although the ZT value along [100] is just moderately high. The ZT value is further increased to 0.8 with a small amount (2% substitution for Re) of Mo addition, by which an incommensurate microstructure is formed as result of extensive shear operation on the nano-scale.

This is a preview of subscription content, access via your institution.


  1. 1.

    D.M. Rowe (Ed.), CRC Handbook of Thermoelectrics, CRC, Boca Raton, FL, U. S. A., (1995).

    Google Scholar 

  2. 2.

    G.S. Nolas, J. Sharp and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer, New York, NY, U. S. A. (2001).

    Google Scholar 

  3. 3.

    G.S. Nolas, J.L. Cohn, G. A Slack and S.B. Schujman, Appl. Phys. Lett., 73, 178 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    V.E. Borisenko (Ed.), Semiconducting Silicides, Springer, New York, U. S. A., (2000).

    Google Scholar 

  5. 5.

    J.P. Becker . J.E. Mahan and R.G. Long, J. Vac. Sci. Tech. A, 13, 1133 (1995).

    CAS  Article  Google Scholar 

  6. 6.

    V.S. Nesphor and G.V. Samsonov, Phys. Met. Metallogr., 11, 146 (1960).

    Google Scholar 

  7. 7.

    J.L. Jorda, M. Ishikawa and J. Muller, J. Less-Comm. Met., 85, 27 (1982).

    CAS  Article  Google Scholar 

  8. 8.

    T. Siegrist, F. Hulliger and G. Travaglini, J. Less-Comm. Met., 92, 119 (1983).

    CAS  Article  Google Scholar 

  9. 9.

    U. Gottlieb, B. Lambert-Andron, F. Nava, M. Affronte, O. Laborde, A. Rouault and R. Madar, J. Appl. Phys. 78, 3902 (1995).

    CAS  Article  Google Scholar 

  10. 10.

    B.K. Bhattacharyya, D.M. Bylander and L. Kleinman, Phys. Rev. B, 33, 3947 (1986).

    CAS  Article  Google Scholar 

  11. 11.

    S. Ito, Mater. Sci. Eng., B6, 37 (1990).

    Article  Google Scholar 

  12. 12.

    J-J. Gu, K. Kuwabara, K. Tanaka, H. Inui, M. Yamaguchi, A. Yamamoto, T. Ohta and H. Obara, Defect Properties and Related Phenomena in Intermetallic Alloys, E.P George et al. (Eds.), MRS, Pittsburgh, PA, U. S. A., 501 (2003).

    Google Scholar 

  13. 13.

    Y. Sakamaki, K. Kuwabara, J-J. Gu, H. Inui, M. Yamaguchi, A. Yamamoto and H. Obara, Mater. Sci. Forum, 426, 1777 (2003).

    Article  Google Scholar 

  14. 14.

    J.S. Anderson, J. Chem. Soc. Dalton Trans., 1107 (1973).

    Google Scholar 

  15. 15.

    B.A. Simkin and H. Inui, Solid-Solid Phase Transformations in Materials, J.M. Howe et al. (Eds.), TMS, Materials Park, PA, U. S. A., in press (2005).

    Google Scholar 

  16. 16.

    J.S. Anderson, B. Collen, U. Kuylenstierna and A. Magneli, Acta Chem. Scand. 11, 1641 (1957).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Haruyuki Inui.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Inui, H. Rhenium silicide as a new class of thermoelectric material. MRS Online Proceedings Library 886, 608 (2005). https://doi.org/10.1557/PROC-0886-F06-08

Download citation