Core-Shell Nanorods for Efficient Photoelectrochemical Hydrogen Production


We propose core-shell InP-CdS and InP-ZnTe nanorods as photoelectrodes in the efficient photoelectrochemical hydrogen production. Based on our systematic study using strain-dependent k.p theory, we find that in these heterostructures both energies and wave-function distributions of electrons and holes can be favorably tailored to a considerable extent by exploiting the interplay between quantum confinement and strain. Consequently, these core-shell nanorods with proper dimensions (height, core radius, and shell thickness) can simultaneously satisfy all criteria for effective photoelectrodes in solar-based hydrogen production.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. J. Bard and M. A. Fox, Acc. Chem. Res. 28, 141 (1995).

    CAS  Article  Google Scholar 

  2. 2.

    See, for example, A. Hagfeldt and M. Grätzel, Chem. Rev. 95, 49 (1995).

    CAS  Article  Google Scholar 

  3. 3.

    A. Bansal, O. Khaselev, and J. A. Turner, Proceedings of the 2000 U.S. DOE Hydrogen Program Review, NREL/CP-570–28890.

  4. 4.

    K. Varner, S. Warren, and J. A. Turner, Proceedings of the 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610–32405.

  5. 5.

    H. A. Finklea, Semiconductor Electrodes (Elsevier, Amsterdam, 1998).

    Google Scholar 

  6. 6.

    O. Khaselev, J. A. Turner, J. Electrochem. Soc. 316, 57 (1991).

    Google Scholar 

  7. 7.

    S. S. Kocha, J. A. Turner, A. J. Nozik, Electroanal. Chem. 27, 367 (1994).

    Google Scholar 

  8. 8.

    S. S. Kocha, J. A. Turner, J. Electrochem. Soc. 142, 2625 (1995).

    CAS  Article  Google Scholar 

  9. 9.

    N. Chandrasekharan and P. V. Kamat, J. Phys. Chem. 104, 10851 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    H. Kato, K. Asakura, and A. Kudo, J. Am. Chem. Soc. 125, 3082 (2003).

    CAS  Article  Google Scholar 

  11. 11.

    L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, Nano Lett. 4, 1485 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    E. P. Pokatilov, V. A. Fonoberov, V. M. Fomin, and J. T. Devreese, Phys. Rev. B 64, 245329 (2001).

    Article  Google Scholar 

  13. 13.

    J. Li and L. W. Wang, Appl. Phys. Lett. 84, 3648 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    D. W. Lucey, D. J. MacRae, M. Furis, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, Chem. Materials, 17, 3754 (2005), and REFERENCES therein.

    CAS  Article  Google Scholar 

  15. 15.

    F. S. Manciu, R.E. Tallman, B.D. McCombe, B.A. Weinstein, D.W. Lucey, Y. Sahoo, and P.N. Prasad, Physica E 26, 14 (2004).

    Article  Google Scholar 

  16. 16.

    C. Pryor, Phys. Rev. B 57, 7190 (1998).

    CAS  Article  Google Scholar 

  17. 17.

    L. D. Landau and E. M. Lifshitz, Theory of Elaticity (Pergamon, London, 1959).

    Google Scholar 

  18. 18.

    T. B. Bahder, Phys. Rev. B 41, 11992 (1990).

    CAS  Article  Google Scholar 

  19. 19.

    Z. G. Yu, C. E. Pryor, W. H. Lau, M. A. Berding, and D. B. MacQueen, J. Phys. Chem. B 109, 22913 (2005).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Z. G. Yu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yu, Z.G., Pryor, C.E., Lau, W.H. et al. Core-Shell Nanorods for Efficient Photoelectrochemical Hydrogen Production. MRS Online Proceedings Library 885, 1103 (2005).

Download citation