Properties of Carbon-doped TiO2 (Anatase) Photo-Electrodes

Abstract

To enhance the visible light absorption of anatase TiO2 photo-electrodes, the material was doped with carbon by two different methods: i) by spray pyrolysis under a CO2 atmosphere, and ii) by a post-deposition thermal treatment in a hexane-containing environment. For the hexane-treated samples, most of the carbon is located at the surface, from which it can be removed by re-oxidation at elevated temperatures. In addition, both methods seem to result in the presence of small amounts of carbon in the bulk of the material, as deduced from a small red-shift of the absorption edge of TiO2.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    A. Fujishima and K. Honda, Nature 238, 37 (1972).

    CAS  Article  Google Scholar 

  2. [2]

    C.Y. Wang, C. Bottcher, D.W. Bahnemann, and J.K. Dohrmann, J. Mater. Chem. 13, 2322 (2003).

    CAS  Article  Google Scholar 

  3. [3]

    A.R. Bally, E.N. Korobeinikova, P.E. Schimd, F. Lévy, and F. Bussy, J. Phys. D: Appl. Phys. 31, 1149 (1998).

    CAS  Article  Google Scholar 

  4. [4]

    A.K. Ghosh and H.P. Maruska, J. Electrochem. Soc. 124, 1516 (1977).

    CAS  Article  Google Scholar 

  5. [5]

    W. Choi, A. Termin, and M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994).

    Article  Google Scholar 

  6. [6]

    T. Lindgren, J.M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C.G. Granqvist, and S.E. Lindquist, J. Phys. Chem. B 107, 5709 (2003).

    CAS  Article  Google Scholar 

  7. [7]

    S. Sakthivel, M. Janczarek, and H. Kisch, J. Phys. Chem. B 108, 19384 (2004).

    CAS  Article  Google Scholar 

  8. [8]

    S.M. Prokes, J.L. Gole, X. Chen, C. Burda, and W.E. Carlos, Adv. Funct. Mater. 15, 161 (2005).

    CAS  Article  Google Scholar 

  9. [9]

    S.U.M. Khan, M. Al Shahry, and W.B. Ingler Jr., Science 297, 2243 (2002).

    CAS  Article  Google Scholar 

  10. [10]

    S. Sakthivel and H. Kisch, Angew. Chem. Int. Ed. 42, 4908 (2003).

    CAS  Article  Google Scholar 

  11. [11]

    Y. Choi, T. Umebayashi, and M. Yoshikawa, J. Mater. Sci. 39, 1837 (2004).

    CAS  Article  Google Scholar 

  12. [12]

    H. Irie, Y. Watanabe, and K. Hashimoto, Chem. Lett. 32, 772 (2003).

    CAS  Article  Google Scholar 

  13. [13]

    T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, Appl. Phys. Lett. 81, 454 (2002).

    CAS  Article  Google Scholar 

  14. [14]

    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001).

    CAS  Article  Google Scholar 

  15. [15]

    B. Tryba, A.W. Morawski, and M. Inagaki, Appl. Catal. B: Environ. 46, 203 (2003).

    CAS  Article  Google Scholar 

  16. [16]

    M. Janus, B. Tryba, M. Inagaki, and A.W. Morawski, Appl. Catal. B: Environ. 52, 61 (2004).

    CAS  Article  Google Scholar 

  17. [17]

    K. Noworyta and J. Augustynski, Electrochem. Solid St. 7, E31 (2004).

    CAS  Article  Google Scholar 

  18. [18]

    C.S. Enache, J. Schoonman, and R. van de Krol, J. Electroceram. 13, 177 (2004).

    CAS  Article  Google Scholar 

  19. [19]

    C.S. Enache, J. Schoonman, and R. van de Krol, Appl. Surf. Sci., in press (2005).

  20. [20]

    B. Tryba, T. Tsumura, M. Janus, A.W. Morawski, and M. Inagaki, Appl. Catal. B: Environ. 50, 177 (2004).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Enache Cristina.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cristina, S.E., Schoonman, J. & van de Krol, R. Properties of Carbon-doped TiO2 (Anatase) Photo-Electrodes. MRS Online Proceedings Library 885, 1011 (2005). https://doi.org/10.1557/PROC-0885-A10-11

Download citation