Experimental study of grain refinement mechanism in undercooled Ni-15at.%Cu alloy


Applying glass fluxing and cyclic superheating, rapid solidification of undercooled Ni-15at.%Cu alloy was performed by rapidly quenching the sample after recalescence. The evolution of microstructure and microtexture has been analyzed. At both low and high undercoolings, well-developed dendrites, within and around which are distributed by the fine equiaxed grains, are observed. At low undercooling, the completely grain-refined microstructure shows a highly oriented texture without annealing twins, whereas at high undercooling a fully random texture as well as a number of annealing twins is observed. On this basis, all the possible mechanisms for grain refinement, as well as their effects on the microstructure formation, were discussed. The grain refinement at both low and high undercoolings is concluded to originate from dendrite fragmentation. Particularly, at high undercooling, recrystallization, as a consequence of dendrite deformation (by fluid flow) and dendrite fragmentation (which provides grain boundary sites for recrystallization nucleation and for the “appearing” recrystallized grains), occurs and plays a role in the grain refinement and the formation of fully random texture.

This is a preview of subscription content, access via your institution.


  1. 1.

    D.M. Herlach: Non-equilibrium solidification of undercooled metallic melts. Mater. Sci. Eng., R12177 (1994)

    Article  Google Scholar 

  2. 2.

    J.D. Hunt, K.A. Jackson: Nucleation of solid in an undercooled liquid by cavitation. J. Appl. Phys.37254 (1966)

    CAS  Article  Google Scholar 

  3. 3.

    A.M. Mullis, R.F. Cochrane: Grain refinement and the stability of dendrites growing into undercooled pure metals and alloys. J. Appl. Phys.823783 (1997)

    CAS  Article  Google Scholar 

  4. 4.

    K.A. Jackson, J.D. Hunt, D.R. Uhlmann, T.P. Seward: On the origin of the equiaxed zone in castings. Trans. AIME236149 (1966)

    CAS  Google Scholar 

  5. 5.

    M. Schwarz, A. Karma, K. Eckler, D.M. Herlach: Physical mechanism of grain refinement in solidification of undercooled melts. Phys. Rev. Lett.731380 (1994)

    CAS  Article  Google Scholar 

  6. 6.

    A. Karma: Model of grain refinement in solidification of undercooled melts. Int. J. Non Equilibr. Process11201 (1998)

    CAS  Google Scholar 

  7. 7.

    F. Liu, G.C. Yang: Rapid solidification of highly undercooled bulk liquid superalloy: Recent developments, future directions. Int. Mater. Rev.51145 (2006)

    CAS  Article  Google Scholar 

  8. 8.

    F. Liu, G.C. Yang: Stress-induced recrystallization mechanism for grain refinement in highly undercooled superalloy. J. Cryst. Growth231295 (2001)

    CAS  Article  Google Scholar 

  9. 9.

    S.E. Battersby, R.F. Cochrane, A.M. Mullis: Microstructural evolution and growth velocity-undercooling relationships in the systems Cu, Cu-O and Cu-Sn at high undercooling. J. Mater. Sci.351365 (2000)

    CAS  Article  Google Scholar 

  10. 10.

    R.F. Cochrane, S.E. Battersby, A.M. Mullis: The mechanisms for spontaneous grain refinement in undercooled Cu-O and Cu-Sn melts. Mater. Sci. Eng., A304-306262 (2001)

    Article  Google Scholar 

  11. 11.

    K.I. Dragnevski, R.F. Cochrane, A.M. Mullis: The mechanism for spontaneous grain refinement in undercooled pure Cu melts. Mater. Sci. Eng., A375-377479 (2004)

    Article  Google Scholar 

  12. 12.

    G. Horvay: The tension field created by a spherical nucleus freezing into its less dense undercooled melt. Int. J. Heat Mass Transfer8195 (1965)

    Article  Google Scholar 

  13. 13.

    K.K. Leung, C.P. Chiu, H.W. Kui: Grain refinement in undercooled nickel. Scr. Metall. Mater.321559 (1995)

    CAS  Article  Google Scholar 

  14. 14.

    H.L. Lee, C.H. Shek, H. Wang: Texture analysis of grain refinement in undercooled Ni99.45B0.55. J. Mater. Res.161434 (2001)

    CAS  Article  Google Scholar 

  15. 15.

    D.M. Herlach, K. Ecker, A. Karma, M. Schwarz: Grain refinement through fragmentation of dendrites in undercooled melts. Mater. Sci. Eng., A304-30620 (2001)

    Article  Google Scholar 

  16. 16.

    A.L. Greer: Grain refinement in rapid solidified alloys. Mater. Sci. Eng., A13316 (1991)

    Article  Google Scholar 

  17. 17.

    D. Kessler, J. Koplik, K. Levine: Pattern selection in fingered growth phenomena. Adv. Phys.37255 (1998)

    Article  Google Scholar 

  18. 18.

    G. Wilde, G.P. Görler, R. Willnecker: Hypercooling of completely miscible alloys. Appl. Phys. Lett.692995 (1996)

    CAS  Article  Google Scholar 

  19. 19.

    R. Willnecker, G.P. Görler, G. Wilde: Appearance of a hypercooled liquid region for completely miscible alloys. Mater. Sci. Eng., A226-228439 (1997)

    Article  Google Scholar 

  20. 20.

    F. Gärtner, A.F. Norman, A.L. Greer, A. Zambon, E. Eamous, K. Eckler, D.M. Herlach: Texture analysis of the development of microstructure in Cu-30at.%Ni alloy droplets solidified at selected undercoolings. Acta Mater.4551 (1997)

    Article  Google Scholar 

  21. 21.

    F. Gärtner, S.A. Moir, A.F. Norman, A.L. Greer, D.M. Herlach: Texture analyses of levitated Fe69Ni30Cr1 droplets. Mater. Sci. Eng., A226-228307 (1997)

    Article  Google Scholar 

  22. 22.

    V. Randle, O. Engler Introduction to Texture Analysis Macrotexture, Microtexture and Orientation Mapping(Gordon and Breach Science Publishers, New York 2000)

    Google Scholar 

  23. 23.

    R.F. Cochrane, D.M. Herlach, B. Feuerbacher: Grain refinement in drop-tube-processed nickel-based alloys. Mater. Sci. Eng., A133706 (1991)

    Article  Google Scholar 

  24. 24.

    M.J. Li, T. Ishilawa, K. Nagashio, K. Kuribayashi, S. Yoda: A comparative EBSP study of microstructure and microtexture formation from undercooled Ni99B1 melts solidified on an electrostatic levitator and an electromagnetic levitator. Acta Mater.543791 (2006)

    CAS  Article  Google Scholar 

  25. 25.

    M.J. Li, T. Tamura, K. Miwa: Controlling microstructures of AZ31 magnesium alloys by an electromagnetic vibration technique during solidification: From experimental observation to theoretical understanding. Acta Mater.554635 (2007)

    CAS  Article  Google Scholar 

  26. 26.

    M.J. Li, T. Tamura, K. Miwa: Microstructure and microtexture formation of AZ91D magnesium alloys solidified in a static magnetic field. Metall. Mater. Trans. A401543 (2009)

    Google Scholar 

  27. 27.

    A. Hellawell, S. Liu, S.Z. Lu: Dendrite fragmentation and the effects of fluid flow castings. JOM4918 (1997)

    CAS  Article  Google Scholar 

  28. 28.

    A.K. Dahle, H.J. Thevik, L. Arnberg, D.H.S. John: Modeling the fluid-flow-induced stress and collapse in a dendritic network. Metall. Mater. Trans. B30287 (1999)

    Article  Google Scholar 

  29. 29.

    J. Pilling, A. Hellawell: Mechanical deformation of dendrites by fluid flow. Metall. Mater. Trans. A27229 (1996)

    Article  Google Scholar 

  30. 30.

    A.M. Mullis, D.J. Walker, S.E. Batterby, R.F. Cochrane: Deformation of dendrites by fluid flow during rapid solidification. Mater. Sci. Eng., A304-306245 (2001)

    Article  Google Scholar 

  31. 31.

    K. Dragnevski, A.M. Mullis, D.J. Walker, R.F. Cochrane: Mechanical deformation of dendrites by fluid flow during the solidification of undercooled melts. Acta Mater.503743 (2002)

    CAS  Article  Google Scholar 

  32. 32.

    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett: Current issues in recrystallization: A review. Mater. Sci. Eng., A238219 (1997)

    Article  Google Scholar 

  33. 33.

    H.F. Wang, F. Liu, Z. Chen, G.C. Yang, Y.H. Zhou: Analysis of non-equilibrium dendrite growth in bulk undercooled alloy melt: Model and application. Acta Mater.55497 (2007)

    CAS  Article  Google Scholar 

  34. 34.

    H.F. Wang, F. Liu, Z. Chen, G.C. Yang, Y.H. Zhou: Effect of non-linear liquidus and solidus in undercooled dendrite growth: A comparative study in Ni-0.7at.%B and Ni-1at.%Zr system. Scr. Mater.57413 (2007)

    CAS  Article  Google Scholar 

  35. 35.

    P.R. Algoso, W.H. Hofmeister, R.J. Bayuzick: Solidification velocity of undercooled Ni-Cu alloys. Acta Mater.514307 (2003)

    CAS  Article  Google Scholar 

  36. 36.

    P.K. Galenko, D.A. Danilov: Model for free dendritic alloy growth under interfacial and bulk phase non-equilibrium conditions. J. Cryst. Growth197992 (1999)

    CAS  Article  Google Scholar 

  37. 37.

    X.L. Li, W. Liu, A. Godfrey, D.J. Jensen, Q. Liu: Development of the cube texture at low annealing temperatures in highly rolled pure nickel. Acta Mater.553531 (2007)

    CAS  Article  Google Scholar 

  38. 38.

    P.P. Bhattacharjee, R.K. Ray, N. Tsuji: Cold rolling and recrystallization textures of a Ni-5at.%W alloy. Acta Mater.572166 (2009)

    CAS  Article  Google Scholar 

  39. 39.

    M.J. Li, T. Ishikawa, K. Nagashio, K. Kuribayashi, S. Yoda: Experimental evidence of crystal fragmentation from highly undercooled Ni99B1 melts processed on an electrostatic levitator. Metall. Mater. Trans. A363254 (2005)

    Article  Google Scholar 

  40. 40.

    G.L. Wu, D.J. Jensen: Orientation of recrystallization nuclei developed in columnar-grained Ni at triple junctions and a high-angle grain boundary. Acta Mater.554955 (2007)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Feng Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, H., Liu, F. & Yang, G. Experimental study of grain refinement mechanism in undercooled Ni-15at.%Cu alloy. Journal of Materials Research 25, 1963–1974 (2010). https://doi.org/10.1557/JMR.2010.0257

Download citation