Determination of reversible hydrogen adsorption site in Ni-nanoparticle-dispersed amorphous silica for hydrogenseparation at high temperature

Abstract

The reversible hydrogen adsorption site in Ni-nanoparticle-dispersed amorphous silica (Si-O) was identified by analyzing the hydrogen adsorption behavior and the microstructure. The total amount of reversibly adsorbed hydrogen was evaluated from the total surface area of Ni and the Ni concentration in the composite. The total surface area of the Ni nanoparticles in each sample powder was calculated from the mean particle size of the Ni nanoparticles in the Si-O matrix using dark field images taken by transmission electron microscopy and high-angle annular dark-field images by scanning transmission electron microscopy. The estimated amount of reversibly adsorbed hydrogen was highly consistent with that obtained experimentally by hydrogen adsorption analysis, which suggested that reversible hydrogen adsorption occurred at the Ni/Si-O interface.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Ohi: Hydrogen energy cycle: An overview. J. Mater. Res.203180 (2005)

    CAS  Article  Google Scholar 

  2. 2.

    L. Schlapbach, A. Zuttel: Hydrogen-storage materials for mobile applications. Nature414353 (2001)

    CAS  Article  Google Scholar 

  3. 3.

    S.C. Singhal: Science and technology of solid-oxide fuel cells. MRS Bull.2516 (2000)

    CAS  Article  Google Scholar 

  4. 4.

    T.M. Nenoff, R.J. Spontak, C.M. Aberg: Membranes for hydrogen purification: An important step toward a hydrogen-based economy. MRS Bull.31735 (2006)

    CAS  Article  Google Scholar 

  5. 5.

    J.M. Ogden: Hydrogen: The fuel of the future? Phys. Today5569 (2002)

    CAS  Article  Google Scholar 

  6. 6.

    T. Tsuru, T. Tsuge, S. Kubota, K. Yoshida, T. Yoshioka, M. Asaeda: Catalytic membrane reactor for methane steam reforming using porous silica membranes. Sep. Sci. Technol.363721 (2001)

    CAS  Article  Google Scholar 

  7. 7.

    S. Kurungot, T. Yamaguchi: Stability improvement of Rh/γ-Al2O3 catalyst layer by ceria doping for steam reforming in an integrated catalytic membrane reactor system. Catal. Lett.92181 (2004)

    CAS  Article  Google Scholar 

  8. 8.

    M. Nomura, H. Aida, K. Nakatani, S. Gopalakrishanan, T. Sugawara, S. Nakao, M. Seshimo, T. Ishikawa, M. Kawamura: Preparation of a catalyst composite silica membrane reactor for steam reforming reaction by using a counterdiffusion CVD method. Ind. Eng. Chem. Res.453950 (2006)

    CAS  Article  Google Scholar 

  9. 9.

    T. Ioannides, X.E. Verykios: Application of a dense silica membrane reactor in the reactions of dry reforming and partial oxidation of methane. Catal. Lett.36165 (1996)

    CAS  Article  Google Scholar 

  10. 10.

    P. Ferreira-Aparicio, I. Rodriguez-Ramos, A. Guerrero-Ruiz: On the applicability of methane technology to the catalysed dry reforming of methane. Appl. Catal., A237239 (2002)

    CAS  Article  Google Scholar 

  11. 11.

    D. Lee, P. Hacarlioglu, S.T. Oyama: Effect of pressure in membrane reactors: Trade off in permeability and equilibrium conversion in the catalytic reforming of CH4 with CO2 at high pressure. Top. Catal.2945 (2004)

    CAS  Article  Google Scholar 

  12. 12.

    J. Shu, B.P. Grandjean, A. Van Neste, S. Kaliagnine: Catalytic palladium-based membrane reactors: A review. Can. J. Chem. Eng.691036 (1991)

    CAS  Article  Google Scholar 

  13. 13.

    J. Sanches, T.T. Tsotsis: Current developments and future research in catalytic membrane reactors Fundamentals of Inorganic Membrane Science and Technologyedited by A.J. Burggaraaf and L. Cot (Elsevier, Amsterdam, The Netherlands 1996)529

    Google Scholar 

  14. 14.

    G.S. Media, G. Barbieri, E. Dorioli: Theoretical and experimental analysis of methane steam reforming in a membrane reactor. Can. J. Chem. Eng.77698 (1999)

    Article  Google Scholar 

  15. 15.

    H. Verweij, Y.S. Lin, J. Dong: Microporous silica and zeolite membranes for hydrogen purification. MRS Bull.31756 (2006)

    CAS  Article  Google Scholar 

  16. 16.

    R.M. de Vos, H. Verweij: High selectivity, high flux silica membrane for gas separation. Science2791710 (1998)

    Article  Google Scholar 

  17. 17.

    A.K. Prabhu, S.T. Oyama: Highly hydrogen selective ceramic membranes: Application to the transformation of greenhouse gases. J. Membr. Sci.176233 (2000)

    CAS  Article  Google Scholar 

  18. 18.

    B.N. Nair, T. Yamaguchi, T. Okubo, H. Suematsu, K. Keizer, S. Nakao: Sol-gel synthesis of molecular sieving silica membranes. J. Membr. Sci.135237 (1997)

    CAS  Article  Google Scholar 

  19. 19.

    K. Yoshida, Y. Hirano, H. Fujii, T. Tsuru, M. Asaeda: Hydrothermal stability and performance of silica-zirconia membranes for hydrogen separation in hydrothermal conditions. J. Chem. Eng. Jpn.34523 (2001)

    CAS  Article  Google Scholar 

  20. 20.

    K. Kusakabe, F. Shibao, G. Zhao, K. Sotowa, K. Watanabe, T. Saito: Surface modificaton of silica membranes in a tubular-type module. J. Membr. Sci.215321 (2003)

    CAS  Article  Google Scholar 

  21. 21.

    M. Kanezashi, M. Asaeda: Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature. J. Membr. Sci.27186 (2006)

    CAS  Article  Google Scholar 

  22. 22.

    R. Igi, T. Yoshioka, Y.H. Ikuhara, Y. Iwamoto, T. Tsuru: Characterization of Co-doped silica for improved hydrothermal stability and application to hydrogen separation membranes at high temperatures. J. Am. Ceram. Soc.912975 (2008)

    CAS  Article  Google Scholar 

  23. 23.

    Y. Iwamoto: Microporous ceramic membranes for high-temperature separation of hydrogen. Membrane29258 (2004)

    CAS  Article  Google Scholar 

  24. 24.

    Y.H. Ikuhara, H. Mori, T. Saito, Y. Iwamoto: High temperature hydrogen adsorption properties of precursor derived nickel nanoparticle-dispersed amorphous silica. J. Am. Ceram. Soc.90546 (2007)

    CAS  Article  Google Scholar 

  25. 25.

    S. Yamazaki, N. Uno, H. Mori, Y.H. Ikuhara, Y. Iwamoto, T. Kato, T. Hirayama: TEM observation of hydrogen permeable Si-M-O(M=Ni or Sc) membranes synthesized on mesorporous anodic alumina capillary tubes. J. Mater. Sci.412679 (2006)

    CAS  Article  Google Scholar 

  26. 26.

    J.T. Richardson, T.S. Cale: Interpretation of hydrogen chemisorption on nickel catalysts. J. Catal.102419 (1986)

    CAS  Article  Google Scholar 

  27. 27.

    S.J. Pennycook: High resolution Z-contrast imaging of crystals. Ultramicroscopy3714 (1991)

    Article  Google Scholar 

  28. 28.

    J.P. Buban, K. Matsunaga, J. Chen, N. Shibata, W.Y. Ching, T. Yamamoto, Y. Ikuhara: Grain boundary strengthening in alumina by rare earth impurities. Science311212 (2006)

    CAS  Article  Google Scholar 

  29. 29.

    N. Shibata, M.F. Chisholm, A. Nakamura, S.J. Pennycook, T. Yamamoto, Y. Ikuhara: Nonstoichiometric dislocation cores in α-alumina. Science31682 (2007)

    CAS  Article  Google Scholar 

  30. 30.

    P.W. Selwood: The chemisorptive bonding of hydrogen on nickel. J. Catal.42148 (1976)

    CAS  Article  Google Scholar 

  31. 31.

    J.R. Anderson Structure of Metallic Catalysts(Academic Press, London 1975)296

    Google Scholar 

  32. 32.

    C.H. Bartholomew: Hydrogen adsorption on supported cobalt, iron, and nickel. Catal. Lett.727 (1990)

    CAS  Article  Google Scholar 

  33. 33.

    R.C. Reuel, C.H. Bartholomew: The stoichiometries of H2 and CO adsorptions on cobalt: Effect of support and preparation. J. Catal.8563 (1984)

    CAS  Article  Google Scholar 

  34. 34.

    J.S. Masaryk, R.M. Fulrath: Diffusivity of helium in fused silica. J. Chem. Phys.591198 (1973)

    CAS  Article  Google Scholar 

  35. 35.

    R.S.A. de Lange, K. Keizer, A.J. Burggraaf: Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes. J. Membr. Sci.10481 (1995)

    Article  Google Scholar 

  36. 36.

    S.T. Oyama, D. Lee, P. Hacarlioglu, R.F. Saraf: Theory of hydrogen permeability in nonporous silica membranes. J. Membr. Sci.24445 (2004)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yumi H. Ikuhara.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ikuhara, Y.H., Saito, T., Sasaki, Y. et al. Determination of reversible hydrogen adsorption site in Ni-nanoparticle-dispersed amorphous silica for hydrogenseparation at high temperature. Journal of Materials Research 25, 2008–2014 (2010). https://doi.org/10.1557/JMR.2010.0254

Download citation