Niobium and tantalum doped titania particles

Abstract

Niobium and tantalum doped anatase were prepared by thermal hydrolysis of peroxotitanium complex aqueous solutions containing of niobium or tantalum peroxo-complexes at 100 °C for 3 days. Niobium-doping increased the unit cell constants of anatase and changed the morphology of TiO2 from spindle-like to rectangular or square cross section. Nb and Ta doping in the TiO2 nanostructure increases the anatase to rutile transformation temperature to >1000 °C. In the visible region, the photocatalytic activity is directly proportional to the concentration and increases with increasing of Nb concentration. The niobium addition enhances the photocatalytic activity of titania in the visible light region.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann: Enviromental applications of semiconductor photocatalysis. Chem. Rev.9569 (1995)

    CAS  Article  Google Scholar 

  2. 2.

    E. Sotter, X. Vilanova, E. Llobet, M. Stankova, X. Correig: Niobium-doped titania nanopowders for gas sensor applications. J. Optoelectron. Adv. Mater.71395 (2005)

    CAS  Google Scholar 

  3. 3.

    R.K. Sharma, M.C. Bhatnagar, G.L. Sharma: Effect of Nb metal ion in TiO2 oxygen gas sensor. Appl. Surf. Sci.92647 (1996)

    CAS  Article  Google Scholar 

  4. 4.

    H. Pan, N. Chen, S. Shen, J. Huag: Preparation and characteristics of Nb5+, Ta5+/TiO2 nanoscale Y powders by sol-gel process using TiCl3. J. Sol-Gel Sci. Technol.3463 (2005)

    CAS  Article  Google Scholar 

  5. 5.

    J. Sabate, M.A. Anderson, H. Kikkawa, Q. Xu, S. Cervera-March, C.G. Hill: Nature and properties of pure and Nb-doped TiO2 ceramic membranes affecting the photocatalytic degradation of 3-chlorosalicylic acid as a model of halogenated organic compounds. J. Catal.13436 (1992)

    CAS  Article  Google Scholar 

  6. 6.

    M. Hirano, K. Matsushima: Photoactive and adsorptive niobium-doped anatase (TiO2) nanoparticles: Influence of hydrothermal conditions on their morphology, structure, and properties. J. Am. Ceram. Soc.89110 (2006)

    CAS  Article  Google Scholar 

  7. 7.

    M. Hirano, K. Matsushima: Effect of niobium on the structure and photoactivity of anatase (TiO2) nanoparticles. J. Nanosci. Nanotechnol.6762 (2006)

    CAS  Article  Google Scholar 

  8. 8.

    M. Hirano, Y. Ichihashi: Phase transformation and precipitation behavior of niobium component out of niobium-doped anatase-type TiO2 nanoparticles synthesized via hydrothermal crystallization. J. Mater. Sci.446135 (2009)

    CAS  Article  Google Scholar 

  9. 9.

    S.M. Karvinen: The effects of trace element doping on the optical properties and photocatalytic activity of nanostructured titanium dioxide. Ind. Eng. Chem. Res.421035 (2006)

    Article  Google Scholar 

  10. 10.

    A. Ahmad, J. Thiel, S.I. Shah: Structural effects of niobium and silver doping on titanium dioxide nanoparticles. J. Phys. Conf. Ser.6111 (2007)

    CAS  Article  Google Scholar 

  11. 11.

    M. Stodolny, M. Laniecki: Synthesis and characterization of mesoporous Ta2O5-TiO2 photocatalysts for water splitting. Catal. Today142314 (2009)

    CAS  Article  Google Scholar 

  12. 12.

    C.M. Visinescu, R. Sanjines, F. Lęevy, V. Marcu, V.I. Parvulescu: Tantalum doped titania photocatalysts: Preparation by DC reactive sputtering and catalytic behavior. J. Photochem. Photobiol., A174106 (2005)

    CAS  Article  Google Scholar 

  13. 13.

    N. Murafa, V. Stengl, V. Houskova: Monodispersed spindle-like particles of titania. Microsc. Microanal.151036 (2005)

    Article  Google Scholar 

  14. 14.

    JCPDS PDF-2 release 2001ICDD Newtown Square, PA (2001)

  15. 15.

    ICSD Database release 2010/1.FIZ Karlsruhe, Germany (2008)

  16. 16.

    S. Brunauer, P.H. Emmett, E. Teller: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc.60309 (1938)

    CAS  Article  Google Scholar 

  17. 17.

    E.P. Barret, L.G. Joyner, P.P. Halenda: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc.73373 (1951)

    Article  Google Scholar 

  18. 18.

    Z.C. Orel, M.K. Gunde, B. Orel: Application of the Kubelka-Munk theory for the determination of the optical properties of solar absorbing paints. Prog. Org. Coat.3059 (1997)

    Article  Google Scholar 

  19. 19.

    C. Su, B.Y. Hong, C.M. Tseng: Sol-gel preparation and photocatalysis of titanium dioxide. Catal. Today96119 (2004)

    CAS  Article  Google Scholar 

  20. 20.

    V. Štengl, V. Houšková, S. Bakardjieva, N. Murafa, V. Havlín: Optically transparent titanium dioxide particles incorporated in hydroxyethyl methacrylate thin layers. J. Phys. Chem. C11219979 (2008)

    Article  Google Scholar 

  21. 21.

    M. Karim, H.S. Lee, Y.S. Kim, H.S. Bae, S.H. Lee: Analysis of salicylic acid based on the fluorescence enhancement of the As(III)-salicylic acid system. Anal. Chim. Acta576136 (2006)

    CAS  Article  Google Scholar 

  22. 22.

    S. Bakardjieva, J. Subrt, V. Stengl, M.J. Dianez, M.J. Sayagues: Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl. Catal., B58193 (2005)

    CAS  Article  Google Scholar 

  23. 23.

    E. Sotter, X. Vilanova, E. Llobet, M. Stankova, X. Correig: Niobium-doped titania nanopowders for gas sensor applications. J. Optoelectron. Adv. Mater.71395 (2005)

    CAS  Google Scholar 

  24. 24.

    V. Houskova, V. Stengl, S. Bakardjieva, N. Murafa, V. Tyrpekl: Photocatalytic properties of Ru-doped titania prepared by homogeneous hydrolysis. Cent. Eur. J. Chem.7259 (2009)

    CAS  Google Scholar 

  25. 25.

    S. Lowell, J.E. Shields Powder Surface Area and Porosity(Chapman & Hall, Boca Raton, FL 1998)

    Google Scholar 

  26. 26.

    J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger: Recommendations for the characterization of porous solids. Pure Appl. Chem.661739 (1994)

    CAS  Article  Google Scholar 

  27. 27.

    D. Shindo: The TEM characterization of monodispersed particles. JOM5431 (2002)

    CAS  Article  Google Scholar 

  28. 28.

    G. Colón, M.C. Hidalgo, J.A. Navío, E. Pulido Melián, O. González Díaz, J.M. Doña: Influence of amine template on the photoactivity of TiO2 nanoparticles obtained by hydrothermal treatment. Appl. Catal., B78176 (2008)

    Article  Google Scholar 

  29. 29.

    R.C. Pullar, S.J. Penn, X. Wang, I.M. Reaney, N.M. Alford: Dielectric loss caused by oxygen vacancies in titania ceramics. J. Eur. Ceram. Soc.29419 (2009)

    CAS  Article  Google Scholar 

  30. 30.

    K.V. Baiju, P. Shajesh, W. Wunderlich, P. Mukundan, S. Rajesh Kumar, K.G.K. Warrier: Effect of tantalum addition on anatase phase stability and photoactivity of aqueous sol-gel derived mesoporous titania. J. Mol. Catal. A: Chem.27641 (2007)

    CAS  Article  Google Scholar 

  31. 31.

    D.S.A. Simakov, Y. Tsur: Preparation of core-shell Ti-Nb oxide nanocrystals. J. Nanopart. Res.1077 (2008)

    CAS  Article  Google Scholar 

  32. 32.

    A. Mattsson, M. Leideborg, K. Larsson, G. Westin, L. Österlund: Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films. J. Phys. Chem. B1101210 (2006)

    CAS  Article  Google Scholar 

  33. 33.

    D.S. Bhatkhande, V.G. Pangarkar, A.A. Beenackers: Photocatalytic degradation for environmental applications—A review. J. Chem. Technol. Biotechnol.77102 (2001)

    Article  Google Scholar 

  34. 34.

    K.M. Reddy, S.V. Panorama, A.R. Reddy: Band gap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys.78239 (2002)

    Article  Google Scholar 

  35. 35.

    R.W. Matthews: Purification of water with near UV illuminated suspensions of titanium dioxide. Water Res.24653 (1992)

    Article  Google Scholar 

  36. 36.

    R.W. Matthews: Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide. J. Catal.111264 (1992)

    Article  Google Scholar 

  37. 37.

    A. Mills, C.E. Holland, R.H. Davies, D. Worsley: Photomineralization of salicylic acid: A kinetic study. J. Photochem. Photobiol., A83257 (1994)

    CAS  Article  Google Scholar 

  38. 38.

    M. Macounová, H. Krysová, J. Ludvík, J. Jirkovsky: Kinetics of photocatalytic degradation of diuron in aqueous colloidal solutions of Q-TiO2 particles. J. Photochem. Photobiol., A156273 (2003)

    Article  Google Scholar 

  39. 39.

    D.S. Bhatkhande, V.G. Pangarkar, A.A. Beenackers: Photocatalytic degradation for environmental applications—A review. J. Chem. Technol. Biotechnol.77102 (2001)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Václav Štengl.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Štengl, V., Houšková, V., Bakardjieva, S. et al. Niobium and tantalum doped titania particles. Journal of Materials Research 25, 2015–2024 (2010). https://doi.org/10.1557/JMR.2010.0252

Download citation