Effects of an Al2O3 capping layer on La2O3 deposited by remote plasma atomic layer deposition

Abstract

The physical and electrical properties of La2O3 with and without an Al2O3 capping layer deposited by remote plasma atomic layer deposition were investigated. The electrical properties of the La2O3 films degraded due to the formation of lanthanum hydroxide after being exposed to air. The results of x-ray photoemission spectroscopy showed that the quantity of OH groups absorbed increased after exposure to air. For La2O3 with an Al2O3 capping layer, however, the electrical properties of the film did not change substantially because the capping layer effectively suppressed the formation of lanthanum hydroxide. The capacitance of the La2O3 decreased more than 30% after exposure to air, while La2O3 with an Al2O3 capping layer decreased by only about 4%. The VFB value of the La2O3 with an Al2O3 capping layer was near zero, and the hysteresis was about 120 mV. The leakage current densities of the film were maintained below 5 × 10−7 A/cm2 up to −15 MV/cm and the effective breakdown field was about −23.5 MV/cm.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G.D. Wilk, R.M. Wallace, J.M. Anthony: High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys.895243 (2001)

    CAS  Article  Google Scholar 

  2. 2.

    H. Wong, H. Iwai: On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectron. Eng.831867 (2006)

    CAS  Article  Google Scholar 

  3. 3.

    E.P. Gusev, E. Cartier, D.A. Buchanan, M. Gribelyuk, M. Copel, H. Okorn-Schmidt, C. D’Emic: Ultrathin high-K metal oxides on silicon: Processing, characterization and integration issues. Microelectron. Eng.59341 (2001)

    CAS  Article  Google Scholar 

  4. 4.

    J. Robertson: Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol., B181785 (2000)

    CAS  Article  Google Scholar 

  5. 5.

    D.H. Triyoso, R.I. Hegde, J. Grant, P. Fejes, R. Liu, D. Roan, M. Ramon, P. Tobin: Film properties of ALD HfO2 and La2O3 gate dielectrics grown on Si with various pre-deposition treatments. J. Vac. Sci. Technol., B222121 (2004)

    CAS  Article  Google Scholar 

  6. 6.

    H. Nohira, T. Hattori Hard and soft x-ray excited photoelectron spectroscopy study on high-k gate insulators Mishima, Japan Jan 20-Feb 18 2006

    Google Scholar 

  7. 7.

    S.Y. No, D. Eom, C.S. Hwang, H.J. Kim: Properties of lanthanum oxide thin films deposited by cyclic chemical vapor deposition using tris(isopropyl-cyclopentadienyl)lanthanum precursor. J. Appl. Phys.100024111 (2006)

    Article  Google Scholar 

  8. 8.

    Y. Zhao, M. Toyama, K. Kita, K. Kyuno, A. Toriumi: Moisture-absorption-induced permittivity deterioration and surface roughness enhancement of lanthanum oxide films on silicon. Appl. Phys. Lett.8872904 (2006)

    Article  Google Scholar 

  9. 9.

    J.H. Jun, D.J. Choi: Effects of the wet air on the properties of the lanthanum oxide and lanthanum aluminate thin films. Thin Solid Films504205 (2006)

    CAS  Article  Google Scholar 

  10. 10.

    G. Lucovsky, S.S. Kim, D.V. Tsu, G.G. Fountain, R.J. Markunas J. Vac. Sci. Technol., B7861 (1989)

    CAS  Article  Google Scholar 

  11. 11.

    A.M. De Asha, J.T.S. Critchley, R.M. Nix: Molecular adsorption characteristics of lanthanum oxide surfaces: The interaction of water with oxide overlayers grown on Cu(111). Surf. Sci.405201 (1998)

    Article  Google Scholar 

  12. 12.

    T.M. Klein, D. Niu, W.S. Epling, W. Li, D.M. Maher, C.C. Hobbs, R.I. Hedge, I.J.R. Baumvol, G.N. Parsons: Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al2O3 thin films on Si(100). Appl. Phys. Lett.754001 (1999)

    CAS  Article  Google Scholar 

  13. 13.

    A-D. Li, Q-Y. Shao, H-Q. Ling, J-B. Cheng, D.W. Wu, Z-G. Liu, N-B. Ming, C. Wang, H-W. Zhou, B-Y. Nguyen: Characteristics of LaAlO3 gate dielectrics on Si grown by metalorganic chemical vapor deposition. Appl. Phys. Lett.8317 (2003)

    Google Scholar 

  14. 14.

    D.E. Eastman: Photoelectric work functions of transition, rare-earth, and noble metals. Phys. Rev. B21 (1970)

    Article  Google Scholar 

  15. 15.

    H.B. Michaelson CRC Handbook of Chemistry and Physicsedited by D.R. Lide and H.P.R. Frederikes (CRC Press, Boca Raton, FL 1996)12–122

  16. 16.

    J.K. Schaeffer, L.R.C. Fonseca, S.B. Samavedam, Y. Liang, P.J. Tobin, B.E. White: Contributions to the effective work function of platinum on hafnium dioxide. Appl. Phys. Lett.851826 (2004)

    CAS  Article  Google Scholar 

  17. 17.

    D. Eom, S.Y. No, C.S. Hwang, H.J. Kim: Properties of aluminum nitride thin films deposited by an alternate injection of trimethylaluminum and ammonia under ultraviolet radiation. J. Electrochem. Soc.153, (4) C229 (2006)

    CAS  Article  Google Scholar 

  18. 18.

    S-W. Kang, S-W. Rhee: Deposition of La2O3 films by direct liquid injection metallorganic chemical vapor deposition. J. Electrochem. Soc.149C345 (2002)

    CAS  Article  Google Scholar 

  19. 19.

    S. Guha, E. Cartier, M.A. Gribelyuk, N.A. Bojarczuk, M.C. Capel: Atomic beam deposition of lanthanum- and yttrium-based oxide thin films for gate dielectrics. Appl. Phys. Lett.772710 (2000)

    CAS  Article  Google Scholar 

  20. 20.

    D. Schroder Semiconductor Material and Device Characterization(Wiley, New York 1998)337–419

    Google Scholar 

  21. 21.

    S.B. Lim, A. Rahtu, P. de Rouffignac, R.G. Gordon: Atomic layer deposition of lanthanum aluminum oxide nano-laminates for electrical applications. Appl. Phys. Lett.84, (20) 17 (2004)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyeongtag Jeon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, Y., Woo, S., Kim, H. et al. Effects of an Al2O3 capping layer on La2O3 deposited by remote plasma atomic layer deposition. Journal of Materials Research 25, 1898–1903 (2010). https://doi.org/10.1557/JMR.2010.0245

Download citation