Skip to main content
Log in

Uniaxial and biaxial compressive response of a bulk metallic glass composite over a range of strain rates and temperatures

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The uniaxial and biaxial compressive responses of Zr57Nb5Al10Cu15.4Ni12.6–W composite were investigated over a range of strain rates (∼10−3 to 103 s−1) using an Instron universal testing machine (∼10−3 to 10° s−1), drop-weight tower (∼200 s−1), and split Hopkinson pressure bar (103 s−1). The temperature dependence of the mechanical behavior was investigated at temperatures ranging from room temperature to 600 °C using the instrumented drop-weight testing apparatus, mounted with an inductive heating device. The deformed and fractured specimens were examined using optical and scanning electron microscopy. Stopped experiments were used to investigate deformation and failure mechanisms at specified strain intervals in both the drop weight and split Hopkinson bar tests. These stopped specimens were also subsequently examined using optical and scanning electron microscopy to observe shear band and crack formation and development after increasingly more strain. The overall results showed an increase in yield strength with strain rate and a decrease in failure strength, plasticity, and hardening with strain rate. Comparison of uniaxial and biaxial loading showed strong susceptibility to shear failure since the additional 10% shear stress caused failure at much lower strains in all cases. Results also showed a decrease in flow stress and plasticity with increased temperature. Also notable was the anomalous behavior at 450 °C, which lies between the Tg and Tx and is in a temperature regime where homogeneous flow, as opposed to heterogeneous deformation by shear banding, is the dominant mechanism in the bulk metallic glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.
FIG. 14.

Similar content being viewed by others

References

  1. H.A. Bruck, A.J. Rosakis, W.L. Johnson: The dynamic compressive behavior of beryllium bearing bulk metallic glass. J. Mater. Res. 11, 503 1996

    Article  CAS  Google Scholar 

  2. J. Lu, G. Ravichandran, W.L. Johnson: Deformation behavior of the Zr41.2Ti31.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429 2003

    Article  CAS  Google Scholar 

  3. G. Subhash, R.J. Dowding, L.J. Kecskes: Characterization of uniaxial compressive response of bulk amorphous Zr–Ti–Cu–Ni–Be alloy. Mater. Sci. Eng., A 334, 33 2002

    Article  Google Scholar 

  4. Y. Kawamura, T. Shibata, A. Inoue, T. Masumoto: Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass. Acta Metall. 46, 253 1998

    CAS  Google Scholar 

  5. L.F. Liu, L.H. Dai, Y.L. Bai, B.C. Wei, G.S. Yu: Strain rate-dependent compressive deformation behavior of Nd-based bulk metallic glass. Intermetallics 13, 827 2005

    Article  Google Scholar 

  6. H. Li, G. Subhash, L.J. Kecskes, R.J. Dowding: Mechanical behavior of tungsten preform reinforced bulk metallic glass composites. Mater. Sci. Eng., A 403, 134 2005

    Article  Google Scholar 

  7. H. Li, G. Subhash, X-L. Gao, L.J. Kecskes, R.J. Dowding: Negative strain rate sensitivity and compositional dependence of fracture strength in Zr/Hf based bulk metallic glasses. Scr. Mater. 49, 1087 2003

    Article  CAS  Google Scholar 

  8. X. Gu, T. Jiao, L.J. Kecskes, R.H. Woodman, C. Fan, K.T. Ramesh, T.C. Hufnagel: Crystallization and mechanical behavior of (Hf,Zr)–Ti–Cu–Ni–Al metallic glasses. J. Non-Cryst. Solids 317, 112 2003

    Article  CAS  Google Scholar 

  9. J-F. Sun, M. Yang, J. Shun: High strain rate induced embrittlement of Zr-based bulk metallic glass. Trans. Nonferrous Met. Soc. China 15, 115 2005

    CAS  Google Scholar 

  10. F. Dalla Torre, A. Dubach, M. Siegrist, J. Loffler: Negative strain rate sensitivity in bulk metallic glass and its similarities with the dynamic strain aging effect during deformation. Appl. Phys. Lett. 89, 1 2006

    Article  Google Scholar 

  11. T. Mukai, T. Nieh, Y. Kawamura, A. Inoue, K. Higashi: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 2002

    Article  CAS  Google Scholar 

  12. T.C. Hufnagel, T. Jiano, Y. Li, L-Q. Xing, K.T. Ramesh: Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 17, 1441 2002

    Article  CAS  Google Scholar 

  13. T. Masumoto, R. Maddin: The mechanical properties of palladium 20 a/o silicon alloy quenched from the liquid state. Acta Metall. 19, 725 1971

    Article  CAS  Google Scholar 

  14. T. Jiao, L.J. Kecskes, T.C. Hufnagel, K.T. Ramesh: Deformation and failure of Zr57Nb5Al10Cu15.4Ni12.6/W particle composites under quasi-static and dynamic compression. Metall. Mater. Trans. A 35, 3439 2004

    Article  Google Scholar 

  15. F. Spaepen: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Mater. 25, 407 1977

    Article  CAS  Google Scholar 

  16. G. Wang, J. Shen, J.F. Sun, Z.P. Lu, Z.H. Stachurski, B.D. Zhou: Compressive fracture characteristics of a Zr-based bulk metallic glass at high test temperatures. Mater. Sci. Eng., A 398, 82 2005

    Article  Google Scholar 

  17. M. Heilmaier, J. Eckert: Elevated temperature deformation behavior of Zr-based bulk metallic glasses. Adv. Eng. Mater. 7, 833 2005

    Article  CAS  Google Scholar 

  18. Q. Wang, J. Pelletier, J. Blandin, M. Suery: Mechanical properties over the glass transition of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass. J. Non-Cryst. Solids 351, 2224 2005

    Article  CAS  Google Scholar 

  19. M.L. Falk, J.S. Langer: From simulation to theory in the physics of deformation and fracture. MRS Bull. 25, 40 2000

    Article  CAS  Google Scholar 

  20. L. Meyer, L. Krueger: Drop weight compression-shear testing, in Mechanical Testing and Evaluation. ASM Handbook, Vol. 8 ASM International Materials Park, OH 2000 452 454

    Google Scholar 

  21. J.X. Li, G.B. Shan, K.W. Gao, L.J. Qiao, W.Y. Chu: In situ study of formation and growth of shear bands and microcracks in bulk metallic glasses. Mater. Sci. Eng., A 354, 337 2003

    Article  Google Scholar 

  22. P.E. Donovan: Compressive deformation of amorphous Pd40Ni40P20. Acta Mater. 37, 445 1988

    Article  Google Scholar 

  23. L.W. Meyer, E. Staskewich, A. Burblies: Adiabatic shear failure under biaxial dynamic compression/shear loading. Mech. Mater. 17, 203 1994

    Article  Google Scholar 

  24. J.G. Loffler, S. Bossuyt, S.C. Glade, W.L. Johnson, W. Wagner, P. Thiyagarajan: Crystallization of bulk amorphous Zr–Ti(Nb)–Cu–Ni–Al. Appl. Phys. Lett. 77, 525 2000

    Article  CAS  Google Scholar 

  25. H. Choi-Yim, R. Busch, U. Koster, W.L. Johnson: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 1999

    Article  CAS  Google Scholar 

  26. B. Hopkinson: A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Roy. Soc. Phil. Trans., A 213, 437 1914

    CAS  Google Scholar 

  27. G. Sunny, F. Yuan, J.J. Lewandowski, V. Prakash: Dynamic stress-strain response of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk metallic glass, in Proceedings of the 2005 SEM Annual Conference and Exposition on Experimental and Applied MechanicsSociety for Experimental Mechanics Bethel, CT 2005 157 164

  28. M.A. Meyers: Experimental techniques: Methods to produce dynamic deformation Dynamic Behavior of Materials John Wiley & Sons, Inc. New York 1994 305 310

    Book  Google Scholar 

  29. R.D. Conner, H. Choi-Yim, W.L. Johnson: Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites. J. Mater. Res. 14, 3292 1999

    Article  CAS  Google Scholar 

  30. P. Gumbsch: Brittle fracture and the brittle-to-ductile transition of tungsten. J. Nucl. Mater. 323, 304 2003

    Article  CAS  Google Scholar 

  31. S. Islam, M. Tufail, X. Qu: Mechanical properties variation with test temperature for liquid phase sintered 95W–3.5Ni–1.5Fe alloys. Mater. Sci. Forum 561, 647 2007

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Liquidmetal Technologies, Inc., for providing the materials. The authors also thank Norman Herzig, David Musch, Christoph Wollschlaeger, Stefan Syla, and Gunther Muth at the Technical University of Chemnitz (TUC) for their help with performing experiments. This research is funded by Army Research Office (ARO) Grant No. E-48148-MS-000-05123-1 (Dr. Mullins program monitor) and was performed at TUC under a German Academic Exchange Service (DAAD) Research Grant. Morgana Martin is a recipient of a NASA Jenkins Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Thadhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, M., Meyer, L., Kecskes, L. et al. Uniaxial and biaxial compressive response of a bulk metallic glass composite over a range of strain rates and temperatures. Journal of Materials Research 24, 66–78 (2009). https://doi.org/10.1557/JMR.2009.0003

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2009.0003

Navigation