Molecular dynamic studies on MgO–Al2O3–SiO2 glass-ceramics

Abstract

Three sets of original dynamics model parameters for MgO–Al2O3–SiO2 (MAS) system were reported for the first time in this paper; moreover, a new parameter optimization standard was put forward to study three different molecular dynamic models of MAS glass-ceramics. The limitations of the conventional parameter optimization methods were also studied. The results indicate: (i) Born-Mayer-Huggins (BMH) model can be only used to simulate amorphous MAS systems. Furthermore, both static optimization and a dynamics test are necessary; (ii) for structure optimization or macroproperties calculation, high accuracy has been achieved relative to the experimental results by using the core-shell (CS) model; (iii) partialQ model computes at a high speed, about twelve times that of the CS model; (iv) for a bulk system, the partialQ model can be first used to obtain an initial structure rapidly, followed by the CS model for high accuracy calculation. In this way, both accuracy and efficiency are achieved. When the model was used to simulate the cordierite crystal and the amorphous in the cordierite glass-ceramic, the results were consistent with the experiments and the structure data from the ab initio calculation. Simulations on amorphous structures in the cordierite glass-ceramic with various compositions displayed that the bond length or coordination numbers (CN) of Si–O and Al–O remained the same with increasing content of MgO, suggesting no change in the tetrahedral configuration of short-range structure. Although the bond length of Mg–O stays almost the same with the increasing content of MgO, the coordination number increases to a certain extent, and the content of O-bridge in SiO2 glass drops from 100%–60% in pyrope glass.

This is a preview of subscription content, access via your institution.

TABLE I.
TABLE II.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE III.
TABLE IV.
FIG. 5
FIG. 6
TABLE V.
FIG. 7
FIG. 8
TABLE VI.
TABLE VII.
TABLE VIII.
TABLE IX.
TABLE X.
TABLE XI.
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
TABLE XII.
FIG. 17

References

  1. 1

    A. Goel, E.R. Shaaban, F.C.L. Melo, M.J. Ribeiro, J.M.F. Ferreira: Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass. J. Non-Cryst. Solids 353, 2383 2007

    CAS  Article  Google Scholar 

  2. 2

    A. Faeghi-Nia, V.K. Marghussian, E. Taheri-Nassaj: Effect of B2O3 on crystallization behavior and microstructure of MgO–SiO2–Al2O3–K2O–F glass-ceramics. Ceram. Int. 33, 773 2007

    CAS  Article  Google Scholar 

  3. 3

    G.H. Chen, X.Y. Liu: Sintering, crystallization and properties of MgO–Al2O3–SiO2 system glass-ceramics containing ZnO. J. Alloys Compd. 431, 282 2007

    CAS  Article  Google Scholar 

  4. 4

    S. Agathopoulos, D.U. Tulyaganov, P. Valerio: A new model formulation of the SiO2–Al2O3–B2O3–MgO–CaO–Na2O–F glass-ceramics. Biomaterials 26, 2255 2005

    CAS  Article  Google Scholar 

  5. 5

    K. Furic, L. Stoch, J. Dutkiewicz: Raman study of TiO2 role in SiO2–Al2O3–MgO–TiO2–ZnO glass crystallization. Spectrochim. Acta, Part A 61, 1653 2005

    Article  Google Scholar 

  6. 6

    N.J. Azin, M.A. Camerucci, A.L. Cavalieri: Crystallisation of non-stoichiometric cordierite glasses. Ceram. Int. 31, 18 2005

    Article  Google Scholar 

  7. 7

    H. Shao, K.M. Liang, F. Peng: Crystallization kinetics of MgO–Al2O3–SiO2 glass-ceramics. Ceram. Int. 30, 927 2004

    CAS  Article  Google Scholar 

  8. 8

    M. Shi, X. Bai, X.F. Wang: Ce4+-modified cordierite ceramics. Ceram. Int. 32, 723 2006

    CAS  Article  Google Scholar 

  9. 9

    I. Szabo: Crystallization of magnesium aluminosilicate glasses. J. Non-Cryst. Solids 219, 128 1997

    CAS  Article  Google Scholar 

  10. 10

    I. Jankovic-Castvan, S. Lazarevic, D. Tanaskovic: Phase transformation in cordierite gel synthesized by non-hydrolytic sol-gel route. Ceram. Int. 33, 1263 2007

    CAS  Article  Google Scholar 

  11. 11

    A.M. Menchi, A.N. Scian: Mechanism of cordierite formation obtained by the sol-gel technique. Mater. Lett. 59, 2664 2005

    CAS  Article  Google Scholar 

  12. 12

    Y. He, W.M. Cheng, H.S. Cai: Characterization of α-cordierite glass-ceramics from fly ash. J. Hazard. Mater. 120, 265 2005

    CAS  Article  Google Scholar 

  13. 13

    H. Shao, K.M. Liang, F. Zhou: Microstructure and mechanical properties of MgO–Al2O3–SiO2–TiO2 glass-ceramics. Mater. Res. Bull. 40, 499 2005

    CAS  Article  Google Scholar 

  14. 14

    N.J. Azín, M.A. Camerucci, A.L. Cavalieri: Crystallisation of non-stoichiometric cordierite glasses. Ceram. Int. 31, 189 2005

    Article  Google Scholar 

  15. 15

    Y.S. Chi, J.Y. Shen, X.X. Chen: IR, DTA and XRD study of MgO–Al2O3–SiO2 glass-ceramic. J. Inorg. Mater. 17, 45 2002

    CAS  Google Scholar 

  16. 16

    G.H. Chen: Effect of replacement of MgO by CaO on sintering, crystallization and properties of MgO–Al2O3–SiO2 system glass-ceramics. J. Mater. Sci. 42, 7239 2007

    CAS  Article  Google Scholar 

  17. 17

    Y.H. Zhao, G.X. Li, X.P. Ma: Crystallization and mechanical properties of high strength glass ceramics in MgO–Al2O3–SiO2 system. J. Chin. Ceram. Soc. 31, 413 2003

    CAS  Google Scholar 

  18. 18

    S.H. Garofalini: Molecular dynamics simulation of the frequency spectrum of amorphous silica. J. Chem. Phys. 76, 3189 1982

    CAS  Article  Google Scholar 

  19. 19

    C.Z. Zhu, P.X. Zhang, Q.M. Xu, J.H. Liu, X.Z. Ren, Q.L. Zhang, W.L. Hong, L.L. Li: Molecular dynamics study the effect of the ratio Ca/Al on CaO–Al2O3–SiO2 structure. Acta Phys. Sinica 55, 4795 2006

    CAS  Article  Google Scholar 

  20. 20

    J.D. O’Neill, J.D. Bass, G.R. Rossman, C.A. Geiger, K. Langer: Elastic properties of pyrope. Phys. Chem. Miner. 17, 617 1991

    Google Scholar 

  21. 21

    D.G. Isaak, E.K. Graham: The elastic properties of an almandine- spessartine garnet and elasticity in the garnet solid solution series. J. Geophys. Res. 81, 2483 1976

    CAS  Article  Google Scholar 

  22. 22

    R. Mittal, S.L. Chaplot, N. Choudhury: Lattice dynamics calculations of the phonon spectra and thermodynamic properties of the aluminosilicate garnets pyrope, grossular, and spessartine Mg3Al2Si3O12. Phys. Rev. B 64, 094302 2001

    Article  Google Scholar 

  23. 23

    M. Okuno, K. Kawamura: Molecular dynamics calculations for Mg3Al2Si3O12 (pyrope) and Ca3Al2Si3O12 (grossular) glass structures. J. Non-Cryst. Solids 191, 249 1994

    Article  Google Scholar 

  24. 24

    J.D. Gale: GULP-a computer program for symmetry adapted simulations of solids. J. Chem. Soc., Faraday Trans. 93, 629 1997

    CAS  Article  Google Scholar 

  25. 25

    A. Kokalj: Plane-Wave Self-Consistent Field http://www.pwscf.org/

  26. 26

    A. Bystrom: The crystal structure of cordierite. Arkiv for Kemi. Mineralogi. Geologi B 15, 1 1942

    Google Scholar 

  27. 27

    S.H. Hoffmann, W. Muchow: The average structure of Mg(Al2Si3O10), a stuffed derivative of the high-quartz structure. Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchim. 134, 1 1971

    Google Scholar 

  28. 28

    P. Predecki, J. Haas, J. Faber Jr., R.L. Hitterman: Structural aspects of the lattice thermal expansion of hexagonal cordierite. J. Am. Ceram. Soc. 70, 175 1987

    CAS  Article  Google Scholar 

  29. 29

    K. Toohill, S. Siegesmund, J.D. Bass: Sound velocities and elasticity of cordierite and implications for deep crustal seismic anisotropy. Phys. Chem. Miner. 26, 333 1999

    CAS  Article  Google Scholar 

  30. 30

    B.W.H. van Beest, G.J. Kramer, R.A. van Santen: Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955 1990

    Article  Google Scholar 

  31. 31

    R.J.D. Tilley: Crystals and Crystal Structures John Wiley & Sons Ltd. The Atrium, Southern Gate, Chichester 2006

    Google Scholar 

  32. 32

    B. Winkler, M.T. Dove, M. Leslie: Static lattice energy minimization and lattice dynamics calculations on aluminosilicate materials. Am. Mineral. 76, 313 1991

    CAS  Google Scholar 

  33. 33

    J.F. Stebbins, P. McMillian: Compositional and temperature effects on five-coordinated silicon in ambient pressure silicate glasses. J. Non-Cryst. Solids 160, 116 1993

    CAS  Article  Google Scholar 

  34. 34

    P.A.V. Johnson, A.C. Wright, R.N. Sinclair: Neutron scattering from vitreous silica II. Twin-axis diffraction experiments. J. Non-Cryst. Solids 58, 109 1983

    CAS  Article  Google Scholar 

  35. 35

    H.F. Poulsen, J. Neuefeind, H.B. Neumann, J.R. Schneider, M.D. Zeidler: Amorphous silica studied by high energy x-ray diffraction. J. Non-Cryst. Solids 188, 63 1995

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was financially supported by National Natural Science Foundation of China (Grant No. 50674068).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peixin Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, P., Zhu, C., Zhang, D. et al. Molecular dynamic studies on MgO–Al2O3–SiO2 glass-ceramics. Journal of Materials Research 23, 2897–2908 (2008). https://doi.org/10.1557/JMR.2008.0367

Download citation