Synthesis of tungsten oxide comblike nanostructures

Abstract

Tungsten oxide comblike nanostructures were synthesized using a two-step thermal evaporation method. The first step involving high reactor pressure and temperature was to synthesize the cores of the comb structures, upon which the teeth of the comb were grown in the second step using low operation pressures and temperatures. The teeth of the comb structure are well aligned and vertical to the side surfaces of the cores. The effects of growth parameters were examined, and the growth mechanism was investigated.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

References

  1. 1

    B. Zhang, J.D. Liu, S.K. Guan, Y.Z. Wan, Y.Z. Zhang, R.F. Chen: Synthesis of single-crystalline potassium-doped tungsten oxide nanosheets as high-sensitive gas sensors. J. Alloys Compd. 439, 55 2007

    CAS  Article  Google Scholar 

  2. 2

    Z.W. Pan, Z.R. Dai, Z.L. Wang: Nanobelts of semiconducting oxides. Science 291, 1947 2001

    CAS  Article  Google Scholar 

  3. 3

    X.G. Wen, S.H. Wang, Y. Ding, Z.L. Wang, S.H. Yang: Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires. J. Phys. Chem. B 109, 215 2005

    CAS  Article  Google Scholar 

  4. 4

    S.L. Wang, Y.H. He, B.Y. Huang, J. Zou, C.T. Liu, P.K. Liaw: Formation and growth mechanism of tungsten oxide microtubules. Chem. Phys. Lett. 427, 350 2006

    CAS  Article  Google Scholar 

  5. 5

    Y.B. Li, Y.S. Bando, D. Golberg: Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 15, 1294 2003

    CAS  Article  Google Scholar 

  6. 6

    Y.H. He, S.L. Wang, B.Y. Huang, C.T. Liu, P.K. Liaw: Novel tungsten oxide microneedles with nanosized tips. Appl. Phys. Lett. 88, 223107 2006

    Article  Google Scholar 

  7. 7

    K.Q. Hong, W.C. Yiu, H.S. Wu, J. Gao, M.H. Xie: A simple method for growing high quantity tungsten-oxide nanoribbons under moist conditions. Nanotechnology 16, 1608 2005

    CAS  Article  Google Scholar 

  8. 8

    X.Y. Kong, Z.L. Wang: Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3, 1625 2003

    CAS  Article  Google Scholar 

  9. 9

    X.Y. Kong, Z.L. Wang: Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals. Appl. Phys. Lett. 84, 975 2004

    CAS  Article  Google Scholar 

  10. 10

    M.J. Bierman, Y.K.A. Lau, A.V. Kvit, A.L. Schmitt, S. Jin: Dislocation-driven nanowire growth and Eshelby twist. Science 320, 1060 2008

    CAS  Article  Google Scholar 

  11. 11

    Y.Q. Zhu, W.B. Hu, W.K. Hsu, M. Terrones, N. Grobert, J.P. Hare, H.W. Kroto, D.R.M. Walton, H. Terrones: Tungsten oxide tree-like structures. Chem. Phys. Lett. 309, 327 1999

    CAS  Article  Google Scholar 

  12. 12

    Y. Baek, Y. Song, K. Yong: A novel heteronanostructure system: Hierarchical W nanothorn arrays onWO3 nanowhiskers. Adv. Mater. 18, 3105 2006

    CAS  Article  Google Scholar 

  13. 13

    H.Q. Yan, R.R. He, J. Johnson, M. Law, R.J. Saykally, P.D. Yang: Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125, 4728 2003

    CAS  Article  Google Scholar 

  14. 14

    J.L. Solis, S. Saukko, L. Kish, C.G. Granqvist, V. Lantto: Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films 391, 255 2001

    CAS  Article  Google Scholar 

  15. 15

    O. Bohnke, M. Rezarzi, B. Vuillemin, C. Bohnke, P.A. Gillet, C. Rousselot: In situ optical and electrochemical characterization of electrochromic phenomena into tungsten trioxide thin-films. Sol. Energy Mater. Sol. Cells 25, 361 1992

    CAS  Article  Google Scholar 

  16. 16

    C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski: Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639 2001

    CAS  Article  Google Scholar 

  17. 17

    Z.W. Liu, Y.S. Bando, C.C. Tang: Synthesis of tungsten oxide nanowires. Chem. Phys. Lett. 372, 179 2003

    CAS  Article  Google Scholar 

  18. 18

    K.Q. Hong, M.H. Xie, H.S. Wu: Tungsten oxide nanowires synthesized by a catalyst-free method at low temperature. Nanotechnology 17, 4830 2006

    CAS  Article  Google Scholar 

  19. 19

    C.C. Liao, F.R. Chen, J.J. Kai: WO3−x nanowires based electrochromic devices. Sol. Energy Mater. Sol. Cells 90, 1147 2006

    CAS  Article  Google Scholar 

  20. 20

    M. Feng, A.L. Pan, H.R. Zhang, Z.A. Li, F. Liu, H.W. Liu, D.X. Shi, B.S. Zou, H.J. Gao: Strong photoluminescence of nanostructured crystalline tungsten oxide thin films. Appl. Phys. Lett. 86, 141901 2005

    Article  Google Scholar 

  21. 21

    K.Q. Hong, M.H. Xie, R. Hu, H.S. Wu: Synthesizing tungsten oxide nanowires by a thermal evaporation method. Appl. Phys. Lett. 90, 173121 2007

    Article  Google Scholar 

  22. 22

    JCPDS No. 71-2450, with β = 115.20°a = 1.8334 nm, b = 0.3786 nm, c = 1.4044 nm. International Center for Diffraction Data Newton Square, PA 1981

  23. 23

    K.Q. Hong, M.H. Xie, R. Hu, H.S. Wu: Diameter control of tungsten oxide nanowires as grown by thermal evaporation. Nanotechnology 19, 085604 2008

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

This work is financially supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region, China under the Grant No. HKU 7047/05P and HKU 7046/05P.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maohai Xie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hong, K., Xie, M., Hu, R. et al. Synthesis of tungsten oxide comblike nanostructures. Journal of Materials Research 23, 2657–2661 (2008). https://doi.org/10.1557/JMR.2008.0324

Download citation