Comparative study of the oxide scale thermally grown on titanium alloys by ion beam analysis techniques and scanning electron microscopy


In the present work, the oxide layers developed at elevated temperature on three vanadium-free titanium alloys, of interest as implant biomaterials, were studied by Rutherford backscattering spectroscopy, elastic recoil detection analysis, and scanning electron microscopy. The chemical composition of the alloys investigated, in wt%, was Ti–7Nb–6Al, Ti–13Nb–13Zr, and Ti–15Zr–4Nb. Upon oxidation in air at 750 °C, an oxide scale forms, with a chemical composition, morphology, and thickness that depend on the alloy composition and the oxidation time. After equal exposure time, the Ti–7Nb–6Al alloy exhibited the thinnest oxide layer due to the formation of an Al2O3-rich layer. The oxide scale of the two TiNbZr alloys is mainly composed of Ti oxides, with small amounts of Nb and Zr dissolved. For both TiNbZr alloys, the role of the Nb-content on the mechanism of the oxide formation is discussed.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1

    B.W. Callen, B.F. Lowenberg, S. Lugowski, R.N.S. Sodhi, J.E. Davies: Nitric-acid passivation of Ti6Al4V reduces thickness of surface oxide layer and increases trace-element release. J. Biomed. Mater. Res. 29, 279 1995

    CAS  Article  Google Scholar 

  2. 2

    A. Sargeant, T. Goswami: Hip implants—Paper VI—Ion concentrations. Mater. Des. 28, 155 2007

    CAS  Article  Google Scholar 

  3. 3

    J.J. Jacobs, A.K. Skipor, J. Black, R.M. Urban, J.O. Galante: Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy. J. Bone Joint Surg. 73-A, 1475 1991

    Google Scholar 

  4. 4

    S.G. Steinemann: Corrosion of surgical implant—In vivo and in vitro test in Evaluation of Biomaterials edited by Wiley New York 1980 1–34

    Google Scholar 

  5. 5

    P.D. Bianco, P. Ducheyne, J.M. Cuckler: Local accumulation of titanium released from a titanium implant in the absence of wear. J. Biomed. Mater. Res. 31, 227 1996

    CAS  Article  Google Scholar 

  6. 6

    P.G. Laing, A.B. Ferguson Jr., E.S. Hodge: Tissue reaction in rabbit muscle exposed to metallic implants. J. Biomed. Mater. Res. 1, 135 1967

    CAS  Article  Google Scholar 

  7. 7

    D.P. Perl, A.R. Brody: Alzheimer’s disease: X-ray spectrometric evidence of aluminium accumulation in neurofibrillary tangle-bearing neurons. Science 208, 297 1980

    CAS  Article  Google Scholar 

  8. 8

    J. Black: Does corrosion matter? J. Bone Joint Surg. 70-B, 517 1988

    Google Scholar 

  9. 9

    Y. Okazaki, S. Rao, Y. Ito, T. Tateishi: Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials 19, 1197 1998

    CAS  Article  Google Scholar 

  10. 10

    N.T.C. Oliveira, E.A. Ferreira, L.T. Duarte, S.R. Biaggio, R.C. Rocha-Filho, N. Bocchi: Corrosion resistance of anodic oxides on the Ti–50Zr and Ti–13Nb–13Zr alloys. Electrochim. Acta 51, 2068 2006

    CAS  Article  Google Scholar 

  11. 11

    Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, R. Yang: Elastic deformation behavior of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater 3, 277 2007

    CAS  Article  Google Scholar 

  12. 12

    W.F. Ho, C.P. Ju, J.H. Chern Lin: Structure and properties of cast binary Ti–Mo alloys. Biomaterials 20, 2115 1999

    CAS  Article  Google Scholar 

  13. 13

    L. Trentani, F. Pelillo, F.C. Pavesi, L. Ceciliani, G. Cetta, A. Forlino: Evaluation of the TiMo12Zr6Fe2 alloy for orthopaedic implants: In vitro biocompatibility study by using primary human fibroblasts and osteoblasts. Biomaterials 23, 2863 2002

    CAS  Article  Google Scholar 

  14. 14

    K. Maehara, K. Doi, T. Matsushita, Y. Sasaki: Application of vanadium-free titanium alloys to artificial hip joints. Mater. Trans. 43, 2936 2002

    CAS  Article  Google Scholar 

  15. 15

    X.T. Zu, X.D. Feng, Z.G. Wang, G.T. Zeng, L.B. Lin, Y.L. Li, X.Q. Huang: Characterisation of the oxide scale on a Ti–2Al–2.5Zr alloy with and without pre-oxidation in an alkaline steam at 300 degrees C. Surf. Coat. Technol. 148, 216 2001

    CAS  Article  Google Scholar 

  16. 16

    I. Dugdale, J.B. Cotton: The anodic polarization of titanium in halide solutions. Corros. Sci. 4, 397 1964

    CAS  Article  Google Scholar 

  17. 17

    J. Pan, D. Thierry, C. Leygraf: Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim. Acta 41, 1143 1996

    CAS  Article  Google Scholar 

  18. 18

    J.E.G. Gonzalez, J.C. Mirza-Rosca: Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J. Electroanal. Chem. 471, 109 1999

    CAS  Article  Google Scholar 

  19. 19

    S. Tamiselvi, V. Raman, N. Rajendran: Corrosion behavior of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim. Acta 52, 839 2006

    Article  Google Scholar 

  20. 20

    M.F. López, J.A. Jiménez, A. Gutiérrez: Corrosion study of surface-modified vanadium-free titanium alloys. Electrochim. Acta 48, 1395 2003

    Article  Google Scholar 

  21. 21

    C. Morant, M.F. López, A. Gutiérrez, J.A. Jiménez: AFM and SEM characterization of non-toxic vanadium-free Ti alloys used as biomaterials. Appl. Surf. Sci. 220, 79 2003

    CAS  Article  Google Scholar 

  22. 22

    M.F. López, J.A. Jiménez, A. Gutiérrez: In vitro corrosion behavior of titanium alloys without vanadium. Electrochim. Acta 47, 1359 2002

    Article  Google Scholar 

  23. 23

    A. Gutiérrez, C. Munuera, M.F. López, J.A. Jiménez, C. Morant, T. Matzelle, N. Kruse, C. Ocal: Surface microstructure of the oxide protective layers grown on vanadium-free Ti alloys for use in biomedical applications. Surf. Sci. 600, 3780 2006

    Article  Google Scholar 

  24. 24

    C. Munuera, T.R. Matzelle, N. Kruse, M.F. López, A. Gutiérrez, J.A. Jiménez, C. Ocal: Surface elastic properties of Ti alloys modified for medical implants: A force spectroscopy study. Acta Biomater. 3, 113 2007

    CAS  Article  Google Scholar 

  25. 25

    M.F. López, J.A. Jiménez, A. Gutiérrez: Surface characterization of new non-toxic titanium alloys for use as biomaterials. Surf. Sci. 482, 300 2001

    Article  Google Scholar 

  26. 26

    M.F. López, L. Soriano, F.J. Palomares, M. Sánchez-Agudo, G.G. Fuentes, A. Gutiérrez, J.A. Jiménez: Soft x-ray absorption spectroscopy study of oxide layers on titanium alloys. Surf. Interface Anal. 33, 570 2002

    Article  Google Scholar 

  27. 27

    A. Gutiérrez, M.F. López, J.A. Jiménez, C. Morant, F. Paszti, A.A. Climent: Surface characterization of the oxide layer grown on Ti–Nb–Zr and Ti–Nb–Al alloys. Surf. Interface Anal. 36, 977 2004

    Article  Google Scholar 

  28. 28

    M. Textor, C. Sittig, V. Frauchiger, S. Tosatti, D.M. Brunette: Properties and biological significance of natural oxide films on titanium and its alloys in Titanium in Medicine edited by D.M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Springer-Verlag Berlin, Germany 2001 171–230

    Google Scholar 

  29. 29

    C. Treves, M. Martinesi, M. Stio, A. Gutiérrez, J.A. Jiménez, M.F. López: Biocompatibility characterization of surface-modified titanium alloys unpublished

  30. 30

    A. Climent-Font, F. Pászti, G. García, M.T. Fernández-Jiménez, F. Agulló: First measurements with the Madrid 5 MV tandem accelerator. Nucl. Instrum. Methods B, 219–220, 400 2004

    Article  Google Scholar 

  31. 31

    E. Kótai: Computer methods for analysis and simulation of RBS and ERDA spectra. Nucl. Instrum. Methods B 85, 588 1994

    Article  Google Scholar 

  32. 32

    D.B. Lee, S.W. Woo: High temperature oxidation of Ti–47% Al–1.7% W-3.7% Zr alloys. Intermetallics 13, 169 2005

    CAS  Article  Google Scholar 

  33. 33

    H.L. Du, P.K. Datta, D.B. Lewis, J.S. Burnell-Gray: Air oxidation behavior of Ti–6Al–4V alloy between 650 °C and 850 °C. Corros. Sci. 36, 631 1994

    CAS  Article  Google Scholar 

  34. 34

    I. Gurappa: Effect of aluminizing on the oxidation behavior of the titanium alloy, IMI 834. Oxid. Met. 56, 73 2001

    Article  Google Scholar 

  35. 35

    L. Gauer, S. Alpèrine, P. Steinmetz, A. Vassel: Influence of niobium additions on high-temperature-oxidation behavior of Ti3Al alloys and coatings. Oxid. Met. 42, 49 1994

    CAS  Google Scholar 

  36. 36

    F.D. Richardson: in Physical Chemistry of Melts in Process Metallurgy Academic Press London, UK 1974

    Google Scholar 

  37. 37

    Y.S. Chen, C.J. Rosa: Oxidation characteristics of Ti–4.37 wt% Ta alloy in the temperature range 1258–1473 K. Oxid. Met. 14, 147 1980

    CAS  Article  Google Scholar 

  38. 38

    M. Göbel, J.D. Sunderkötter, D.I. Mircea, H. Jenett, M.F. Stroosnijder: Study of the high-temperature oxidation behavior of Ti and Ti4Nb with SNMS using tracers. Surf. Interface Anal. 29, 321 2000

    Article  Google Scholar 

  39. 39

    A. Gutiérrez, J. de Damborenea: High-temperature oxidation behavior of laser-surface-alloyed incoloy-800H with Al. Oxid. Met. 47, 259 1997

    Article  Google Scholar 

  40. 40

    M.F. López, A. Gutiérrez, M.C. García-Alonso, M.L. Escudero: Surface analysis of a heat-treated, Al-containing, iron-based superalloy. J. Mater. Res. 13, 3411 1998

    Article  Google Scholar 

Download references


The authors gratefully acknowledge Prof. G. Fommeyer from Max Planck Institut für Eisenforschung (Düsseldorf, Germany) for kindly supplying the Ti alloy specimens. This work has been supported by Project Nos. 07N-0050-1999 and 07N-0066-2002 of the Spanish “Programa de Tecnología de los Materiales de la Comunidad Autónoma de Madrid,” by the “Nanoselect” project of the Spanish Consolider-Ingenio 2007 program, by Project No. MAT2007-66719-C03-03 of the Spanish “Ministerio de Educación y Ciencia,” and by the Hungarian OTKA Grant No. T-046238. F.P. acknowledges the Spanish Ministerio de Educación, Cultura y Deporte for financial support through a Sabbatical Year Grant (No. SAB2000-0243).

Author information



Corresponding author

Correspondence to A. Gutiérrez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gutiérrez, A., Pászti, F., Climent-Font, A. et al. Comparative study of the oxide scale thermally grown on titanium alloys by ion beam analysis techniques and scanning electron microscopy. Journal of Materials Research 23, 2245–2253 (2008).

Download citation