Skip to main content
Log in

Enhanced tensile ductility in an electrodeposited nanocrystalline copper

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A fully dense nanocrystalline (nc) Cu with mean grain size of 72 nm and a broad grain size distribution was synthesized by electrodeposition. Uniaxial tensile tests were done at different strain rates and room temperature. A very high strength of 1.04 G was obtained at strain rate of 0.1 s−1. The nearly perfect plasticity with a large strain of close to 20% was displayed at specific low strain rates of 4 × 10−5 to 10−4 s−1. With increasing strain rate, the nearly perfect plasticity disappeared. Strain rate sensitivity and activation volume of the nc Cu were estimated from the flow stress at a fixed strain of 1% and a strain rate change (jump) test. It was deduced from the high strain rate sensitivity exponent of 0.08 and small activation volume of 12b3 that both dislocation and grain boundary activities would take place in this nc Cu, which explained the nearly perfect plasticity observed in the tensile test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. R.W. Herzberg: Deformation and Fracture Mechanics of Engineering Materials 3rd ed. John Wiley and Sons New York 1989 392

    Google Scholar 

  2. M.K. Youssef, R.O. Scattergood, K.L. Murty, J.A. Horton, C.C. Koch: Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl. Phys. Lett. 87, 091904 2005

    Article  Google Scholar 

  3. C. Gu, J. Lian, Q. Jiang, Z. Jiang: Ductile-brittle-ductile transition in an electrodeposited 13 nanometer grain sized Ni–8.6 wt% Co alloy. Mater. Sci. Eng., A 459, 75 2007

    Article  Google Scholar 

  4. C.C. Koch: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49, 657 2003

    Article  CAS  Google Scholar 

  5. E. Ma: Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 49, 663 2003

    Article  CAS  Google Scholar 

  6. Y.M. Wang, K. Wang, D. Pan, K. Lu, K.J. Hemker, E. Ma: Microsample tensile testing of nanocrystalline copper. Scr. Mater. 48, 1581 2003

    Article  CAS  Google Scholar 

  7. Y. Wang, M. Chen, F. Zhou, E. Ma: High tensile ductility in a nanostructured metal. Nature 419, 912 2002

    Article  CAS  Google Scholar 

  8. H. Zhang, Z. Jiang, J. Lian, Q. Jiang: Strain rate dependence of tensile ductility in an electrodeposited Cu with ultrafine grain size. Mater. Sci. Eng., A 479, 136 2008

    Article  Google Scholar 

  9. X. Shen, J. Lian, Z. Jiang, Q. Jiang: High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution. Mater. Sci. Eng., A 487, 410 2008

    Article  Google Scholar 

  10. Z. Jiang, X. Liu, G. Li, Q. Jiang, J. Lian: Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating. Appl. Phys. Lett. 88, 143115 2006

    Article  Google Scholar 

  11. J. Chen, L. Lu, K. Lu: Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54, 1913 2006

    Article  CAS  Google Scholar 

  12. R.K. Guduru, K. Linga Murty, M.K. Youssef, R.O. Scattergood, C.C. Koch: Mechanical behavior of nanocrystalline copper. Mater. Sci. Eng., A 463, 14 2007

    Article  Google Scholar 

  13. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, E. Ma: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 2007

    Article  CAS  Google Scholar 

  14. H.P. Klug, L.E. Alexander: X-ray Diffraction Procedures 2nd ed. Wiley New York 1974 505

    Google Scholar 

  15. H. Wei, G.D. Hibbard, G. Palumbo, U. Erb: The effect of gauge volume on the tensile properties of nanocrystalline electrodeposits. Scr. Mater. 57, 996 2007

    Article  CAS  Google Scholar 

  16. F. Dalla Torre, H. Van Swygenhoven, M. Victoria: Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50, 3957 2002

    Article  Google Scholar 

  17. C. Gu, J. Lian, Z. Jiang, Q. Jiang: Enhanced tensile ductility in an electrodeposited nanocrystalline Ni. Scr. Mater. 54, 579 2006

    Article  CAS  Google Scholar 

  18. I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, P.D. Hodgson: Enhanced tensile ductility of an ultra-fine-grained aluminum alloy. Scr. Mater. 58, 163 2008

    Article  CAS  Google Scholar 

  19. S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, K. Han: Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater. 53, 1521 2005

    Article  CAS  Google Scholar 

  20. R.J. Asaro, S. Suresh: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369 2005

    Article  CAS  Google Scholar 

  21. L. Lu, R. Schwarger, Z.W. Shan, M. Dao, K. Lu, S. Suresh: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169 2005

    Article  CAS  Google Scholar 

  22. Q. Wei, S. Cheng, K.T. Ramesh, E. Ma: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng., A 381, 71 2004

    Article  Google Scholar 

  23. J. Lian, C. Gu, Q. Jing, Z. Jiang: Strain rate sensitivity of face-centered-cubic nanocrystalline materials based on dislocation deformation. J. Appl. Phys. 99, 076103 2006

    Article  Google Scholar 

  24. E. Ma: Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58, 49 2006

    Article  CAS  Google Scholar 

  25. Y.M. Wang, A.V. Hamza, E. Ma: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 2006

    Article  CAS  Google Scholar 

  26. Y.M. Wang, E. Ma: Temperature and strain rate effects on the strength and ductility of nanostructured copper. Appl. Phys. Lett. 83, 3165 2003

    Article  CAS  Google Scholar 

  27. Y.M. Wang, E. Ma: Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52, 1699 2004

    Article  CAS  Google Scholar 

  28. H. Li, F. Ebrahimi: Ductile-to-brittle transition in nanocrystalline metals. Adv. Mater. 17, 1969 2005

    Article  CAS  Google Scholar 

  29. H. Li, F. Ebrahimi: Tensile behavior of a nanocrystalline Ni-Fe alloy. Acta Mater. 54, 2877 2006

    Article  CAS  Google Scholar 

  30. C.D. Gu, J.S. Lian, Q. Jiang, W.T. Zheng: Experimental and modeling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni. J. Phys. D: Appl. Phys. 40, 7440 2007

    Article  CAS  Google Scholar 

  31. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, P. Wang: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387 2003

    Article  CAS  Google Scholar 

  32. E. Ma, Y.M. Wang, Q.H. Lu, M.L. Sui, L. Lu, K. Lu: Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper. Appl. Phys. Lett. 85, 4932 2004

    Article  CAS  Google Scholar 

  33. Y. Chanmpaion, C. Langlois, S. Guérin-Mailly, P. Langlois, J-L. Bonnentien, M.J. Hÿtch: Near-perfect elastoplasticity in pure nanocrystalline copper. Science 300, 310 2003

    Article  Google Scholar 

  34. Y.M. Wang, E. Ma: On the origin of ultrahigh cryogenic strength of nanocrystalline metals. Appl. Phys. Lett. 85, 2750 2004

    Article  CAS  Google Scholar 

  35. C. Brandl, E. Bitzek, P.M. Derlet, H. Van Swygenhoven: Slip transfer through a general high angle grain boundary in nanocrystalline aluminum. Appl. Phys. Lett. 91, 111914 2007

    Article  Google Scholar 

  36. I.A. Ovid’ko: Review on the fracture processes in nanocrystalline materials. J. Mater. Sci. 42, 1694 2007

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation of National Key Basic Research and Development Program (No. 2004CB619301), the National Natural Science Foundation of China (No. 50771049), and Project 985-automotive engineering of Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshe Lian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Jiang, Z., Zhang, H. et al. Enhanced tensile ductility in an electrodeposited nanocrystalline copper. Journal of Materials Research 23, 2238–2244 (2008). https://doi.org/10.1557/JMR.2008.0280

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0280

Navigation