Controlling the shape of Al/Ni multilayer foils using variations in stress


Al/Ni multilayer foils were sputter-deposited with an in-plane residual stress state that was altered midway through the thickness of the foils by changing the bilayer spacing. The difference in stress between the top and bottom halves of the foil caused these systems to curl when they were removed from their substrates. As predicted, the radius of curvature increased linearly as the difference in stress between the upper and lower halves decreased and as foil thickness increased, demonstrating the ability to fabricate layered foils with specific curvatures. Unexpectedly, however, the radii of curvature of all the free-standing foils decreased with time after removal from their substrates, suggesting that a time-dependent relaxation mechanism was operating. An explanation based on stress driven, time-dependent deformation is offered to explain the relaxation, and an elasticity-based curvature model is presented for comparison with the measured steady state curvatures.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1

    J.A. Floro: Propagation of explosive crystallization in thin Rh–Si multilayer films. J. Vac. Sci. Technol., A 4, 631 1986

    CAS  Article  Google Scholar 

  2. 2

    A.J. Gavens, D. Van Heerden, A.B. Mann, M.E. Reiss T.P. Weihs: Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J. Appl. Phys. 87, 1255 2000

    CAS  Article  Google Scholar 

  3. 3

    E. Besnoin, S. Cerutti O.M. Knio: Effect of reactant and product melting on self-propagating reactions in multilayer foils. J. Appl. Phys. 92, 5474 2002

    CAS  Article  Google Scholar 

  4. 4

    J. Wang, E. Besnoin, A. Duckham, S.J. Spey, M.E. Reiss, O.M. Knio T.P. Weihs: Joining of stainless-steel specimens with nanostructured Al/Ni foils. J. Appl. Phys. 95, 248 2004

    CAS  Article  Google Scholar 

  5. 5

    E. Ma, C.V. Thompson, L.A. Clevenger K.N. Tu: Self-propagating explosive reactions in Al/Ni multilayer thin films. Appl. Phys. Lett. 57, 1262 1990

    CAS  Article  Google Scholar 

  6. 6

    P.J. Kelly, S.F. Tinston R.D. Arnell: The deposition and analysis of pyrotechnic devices deposited by magnetron sputtering. Surf. Coat. Technol. 60, 597 1993

    CAS  Article  Google Scholar 

  7. 7

    P.J. Kelly S.F. Tinston: Pyrotechnic devices by unbalanced magnetron sputtering. Vacuum 45, 507 1994

    CAS  Article  Google Scholar 

  8. 8

    A.J. Swiston Jr., T.C. Hufnagel T.P. Weihs: Joining bulk metallic glass using reactive multilayer foils. Scr. Mater. 48, 1575 2003

    CAS  Article  Google Scholar 

  9. 9

    J. Wang, E. Besnoin, A. Duckham, S.J. Spey, M.E. Reiss, O.M. Knio, M. Powers, M. Whitener T.P. Weihs: Room-temperature soldering with nanostructured foils. Appl. Phys. Lett. 83, 3987 2003

    CAS  Article  Google Scholar 

  10. 10

    A. Duckham, S.J. Spey, J. Wang, M.E. Reiss, T.P. Weihs, E. Besnoin O.M. Knio: Reactive nanostructured foil used as a heat source for joining titanium. J. Appl. Phys. 96, 2336 2004

    CAS  Article  Google Scholar 

  11. 11

    B.D. Harper C.P. Wu: A geometrically nonlinear model for predicting the intrinsic film stress by the bending-plate method. Int. J. Sol. Struct. 25, 511 1990

    Article  Google Scholar 

  12. 12

    D.E. Fahnline, C.B. Masters N.J. Salamon: Thin film stress from nonspherical substrate bending measurements. J. Vac. Sci. Technol., A 9, 2483 1991

    Article  Google Scholar 

  13. 13

    A.B. Mann, J. Tapson, D. van Heerden, A.C. Lewis, D. Josell T.P. Weihs: Apparatus to measure wafer curvature for multilayer systems in a vacuum furnace. Rev. Sci. Instrum. 73, 1821 2002

    CAS  Article  Google Scholar 

  14. 14

    G.G. Stoney: The tension of metallic films deposited by electrolysis. Proc. R. Soc. London Ser. A 82, 172 1909

    CAS  Article  Google Scholar 

  15. 15

    R. Abermann: Measurements of the intrinsic stress in thin metal films. Vacuum 41, 1279 1990

    Article  Google Scholar 

  16. 16

    W.D. Nix B.M. Clemens: Crystallite coalescence: A mechanism for intrinsic tensile stress in thin films. J. Mater. Res. 14, 3467 1999

    CAS  Article  Google Scholar 

  17. 17

    J.A. Floro, E. Chason, R.C. Cammarata D.J. Srolovitz: Physical origins of intrinsic stresses in Volmer–Weber thin films. MRS Bull. 27, 19 2002

    CAS  Article  Google Scholar 

  18. 18

    D.W. Hoffman J.A. Thornton: Internal stresses in Cr, Mo, Ta, and Pt films deposited by sputtering from a planar magnetron source. J. Vac. Sci. Technol. 20, 355 1982

    CAS  Article  Google Scholar 

  19. 19

    R.C. Cammarata: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1 1994

    CAS  Article  Google Scholar 

  20. 20

    S. Berger F. Spaepen: The Ag/Cu interface stress. Nanostruct. Mater. 6, 201 1995

    CAS  Article  Google Scholar 

  21. 21

    J.A. Ruud, A. Witvrouw F. Spaepen: Bulk and interface stresses in silver-nickel multilayered thin films. J. Appl. Phys. 74, 2517 1993

    CAS  Article  Google Scholar 

  22. 22

    A.L. Shull F. Spaepen: Measurements of stress during vapor deposition of copper and silver thin films and multilayers. J. Appl. Phys. 80, 6243 1996

    CAS  Article  Google Scholar 

  23. 23

    A. Misra, H. Kung, T.E. Mitchell M. Nastasi: Residual stresses in polycrystalline Cu/Cr multilayered thin films. J. Mater. Res. 15, 756 2000

    CAS  Article  Google Scholar 

  24. 24

    X. Zhang A. Misra: Residual stresses in sputter-deposited copper/330 stainless steel multilayers. J. Appl. Phys. 96, 7173 2004

    CAS  Article  Google Scholar 

  25. 25

    B.M. Clemens, W.D. Nix V. Ramaswamy: Surface-energy-driven intermixing and its effect on the measurement of interface stress. J. Appl. Phys. 87, 2816 2000

    CAS  Article  Google Scholar 

  26. 26

    H. Nathani, J. Wang T.P. Weihs: Long-term stability of nanostructured systems with negative heats of mixing. J. Appl. Phys. 101, 104315 2007

    Article  Google Scholar 

  27. 27

    R. Venkatraman J.C. Bravman: Separation of film thickness and grain-boundary strengthening effects in Al thin-films on Si. J. Mater. Res. 7, 2040 1992

    CAS  Article  Google Scholar 

  28. 28

    B.M. Clemens J.A. Bain: Stress determination in textured thin-films using x-ray diffraction. MRS Bull. 17, 46 1992

    CAS  Article  Google Scholar 

  29. 29

    G. Cornella, S.H. Lee, W.D. Nix J.C. Bravman: An analysis technique for extraction of thin film stresses from x-ray data. Appl. Phys. Lett. 71, 2949 1997

    CAS  Article  Google Scholar 

  30. 30

    L.B. Freund S. Suresh: Thin Film Materials: Stress, Defect Formation and Surface Evolution Cambridge University Press Cambridge, England 2003

    Google Scholar 

  31. 31

    M.F. Doerner S. Brennan: Strain distribution in thin aluminum films using x-ray depth profiling. J. Appl. Phys. 63, 126 1988

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge financial support from Lawrence Livermore National Laboratory (grant B562528) and from the Office of Naval Research (grant N00014-07-1-0740). The authors also acknowledge J. Gryzb for assistance with curvature and profilometry measurements and M. Koontz for assistance with SEM imaging.

Professor Weihs is a founder of a company called Reactive Nanotechnologies, Inc. (RNT), which has licensed technologies developed at the Johns Hopkins University (described in this article). The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies.

Author information



Corresponding author

Correspondence to Timothy P. Weihs.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knepper, R., Fritz, G. & Weihs, T.P. Controlling the shape of Al/Ni multilayer foils using variations in stress. Journal of Materials Research 23, 2009–2016 (2008).

Download citation