Role of minor addition of metallic alloying elements in formation and properties of Cu–Ti-rich bulk metallic glasses

Abstract

The effect of minor addition (MA) of metallic alloying elements in Cu–Ti-rich Cu–Ti–Zr–Ni–Si bulk metallic glasses (BMGs) has been investigated. MA of elements having a relatively small positive enthalpy of mixing (partial substitution of Zr with Nb) leads to enhancement of compressive plasticity (up to about 5% of fracture strain) when the addition leads to improvement in glass-forming ability (GFA). If the GFA is reduced (partial substitution of Ni with Ag or Co), the plasticity is also reduced. On the one hand, the MA of elements having a relatively large positive enthalpy of mixing (partial substitution of Zr with Y) can lead to the liquid-state phase separation in Cu–Ti–Zr–Ni–Si(–Sn) BMGs, although the addition can lead to drastic deterioration in GFA and plasticity. This concept would be considered to be effective even in design of other BMG systems with tailored properties.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
TABLE I.
FIG. 8
FIG. 9

References

  1. 1

    A.L. Greer E. Ma: Bulk metallic glasses: At the cutting edge of metals research. MRS Bull. 32, 611 2007

    CAS  Article  Google Scholar 

  2. 2

    A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000

    CAS  Article  Google Scholar 

  3. 3

    W.H. Wang: Role of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 52, 540 2007

    CAS  Article  Google Scholar 

  4. 4

    D.B. Miracle: A structural model for metallic glasses. Nat. Mater. 3, 697 2004

    CAS  Google Scholar 

  5. 5

    H. Ma, L.L. Shi, J. Xu, Y. Li E. Ma: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 2005

    Article  Google Scholar 

  6. 6

    J.H. Kim, J.S. Park, E.S. Park, W.T. Kim D.H. Kim: Estimation of critical cooling rates for glass formation in bulk metallic glasses through non-isothermal thermal analysis. Met. Mater. Int. 11, 1 2005

    CAS  Article  Google Scholar 

  7. 7

    W.L. Johnson K. Samwer: A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 2005

    CAS  Article  Google Scholar 

  8. 8

    E.S. Park, J.H. Na D.H. Kim: Correlation between fragility and glass-forming ability/plasticity in metallic glass-forming alloys. Appl. Phys. Lett. 91, 031907 2007

    Article  Google Scholar 

  9. 9

    H. Choi-Yim, R. Busch W.L. Johnson: The effect of silicon on the glass forming ability of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites. J. Appl. Phys. 83, 7993 1998

    CAS  Article  Google Scholar 

  10. 10

    M. Calin, J. Eckert L. Schultz: Improved mechanical behavior of Cu–Ti–based bulk metallic glass by in situ formation of nanoscale precipitates. Scr. Mater. 48, 653 2003

    CAS  Article  Google Scholar 

  11. 11

    E.S. Park, H.K. Lim, W.T. Kim D.H. Kim: The effect of Sn addition on the glass-forming ability of Cu–Ti–Zr–Ni–Si metallic glass alloys. J. Non-Cryst. Solids 298, 15 2002

    CAS  Article  Google Scholar 

  12. 12

    E.S. Park, W.T. Kim D.H. Kim: The effect of In addition on the glass-forming ability of Cu–Ti–Zr–Ni–Si metallic glasses. Mater. Trans. 45, 2693 2004

    CAS  Article  Google Scholar 

  13. 13

    E.S. Park, D.H. Kim, T. Ohkubo K. Hono: Enhancement of glass forming ability and plasticity by addition of Nb in Cu–Ti–Zr–Ni–Si bulk metallic glasses. J. Non-Cryst. Solids 351, 1232 2005

    CAS  Article  Google Scholar 

  14. 14

    B. Liu L. Liu: The effect of microalloying on thermal stability and corrosion resistance of Cu-based bulk metallic glasses. Mater. Sci. Eng., A 415, 286 2006

    Article  Google Scholar 

  15. 15

    C.L. Ma, H. Soejima, S. Ishihara, K. Amiya, N. Nishiyama A. Inoue: New Ti-based bulk glassy alloys with high glass-forming ability and superior mechanical properties. Mater. Trans. 45, 3223 2004

    CAS  Article  Google Scholar 

  16. 16

    S. Venkataraman, M. Stoica, S. Scudino, T. Gemming, C. Mickel, U. Kunz, K.B. Kim, L. Schultz J. Eckert: Revisiting the Cu47Ti33Zr11Ni8Si1 glass-forming alloy. Scr. Mater. 54, 835 2006

    CAS  Article  Google Scholar 

  17. 17

    E.S. Park D.H. Kim: Design of bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: A review. Met. Mater. Int. 11, 19 2005

    CAS  Article  Google Scholar 

  18. 18

    A.R. Miedema: The heat of formation of alloys. Philips Tech. Rev. 36, 217 1976

    CAS  Google Scholar 

  19. 19

    L-Q. Xing, Y. Li, K.T. Ramesh, J. Li T.C. Hufnagel: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B 64, 180201R 2001

    Article  Google Scholar 

  20. 20

    M.H. Lee, J.Y. Lee, D.H. Bae, W.T. Kim, D.J. Sordelet D.H. Kim: A development of Ni-based alloys with enhanced plasticity. Intermetallics 12, 1133 2004

    CAS  Article  Google Scholar 

  21. 21

    D.S. Sung, O.J. Kwon, E. Fleury, K.B. Kim, J.C. Lee, D.H. Kim Y.C. Kim: Enhancement of the glass forming ability of Cu–Zr–Al alloys by Ag addition. Met. Mater. Int. 10, 575 2004

    CAS  Article  Google Scholar 

  22. 22

    E.S. Park, J.Y. Lee D.H. Kim: Effect of Ag addition on the improvement of glass-forming ability and plasticity of Mg–Cu–Gd bulk metallic glass. J. Mater. Res. 20, 2379 2005

    CAS  Article  Google Scholar 

  23. 23

    E.S. Park, H.J. Chang, D.H. Kim, T. Ohkubo K. Hono: Effect of the substitution of Ag and Ni for Cu on the glass forming ability and plasticity of Cu60Zr30Ti10 alloy. Scr. Mater. 54, 1569 2006

    CAS  Article  Google Scholar 

  24. 24

    E.S. Park D.H. Kim: Phase separation and enhancement of plasticity in Cu–Zr–Al–Y bulk metallic glasses. Acta Mater. 54, 2597 2006

    CAS  Article  Google Scholar 

  25. 25

    E.G. Dieter: Mechanical Metallurgy 3rd ed. McGraw-Hill Book Company New York 1986

    Google Scholar 

  26. 26

    Z.F. Zhang, J. Eckert L. Schultz: Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51, 1167 2003

    CAS  Article  Google Scholar 

  27. 27

    R.D. Conner, H. Choi-Yim W.L. Johnson: Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites. J. Mater. Res. 14, 3292 1999

    CAS  Article  Google Scholar 

  28. 28

    G. Subhash, J.R. Dowding L.J. Kecskes: Characterization of uniaxial compressive response of bulk amorphous Zr–Ti–Cu–Ni–Be alloy. Mater. Sci. Eng., A 334, 33 2002

    Article  Google Scholar 

  29. 29

    A.A. Kündig, M. Ohnuma, D.H. Ping, T. Ohkubo K. Hono: In-situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater. 52, 2441 2004

    Article  Google Scholar 

  30. 30

    B.J. Park, H.J. Chang, W.T. Kim D.H. Kim: In situ formation of two amorphous phases by liquid phase separation in Y–Ti–Al–Co alloy. Appl. Phys. Lett. 85, 6353 2004

    CAS  Article  Google Scholar 

  31. 31

    N. Mattern, U. Kühn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock L. Schultz: Microstructure and thermal behavior of two-phase amorphous Ni–Nb–Y alloy. Scr. Mater 53, 271 2005

    CAS  Article  Google Scholar 

  32. 32

    J.C. Oh, T. Ohkubo, Y.C. Kim, E. Eleury K. Hono: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scr. Mater. 53, 165 2005

    CAS  Article  Google Scholar 

  33. 33

    B.J. Park, H.J. Chang, D.H. Kim, W.T. Kim, K. Chattopadhyay, T.A. Abinandanan S. Bhattacharyya: Phase separating bulk metallic glass: A hierarchical composite. Phys. Rev. Lett. 96, 245503 2006

    Article  Google Scholar 

  34. 34

    E.S. Park, E.Y. Jeong, J-K. Lee, J.C. Bea, A.R. Kwon, A. Gebert, L. Schultz, H.J. Chang D.H. Kim: In situ formation of two glassy phases in the Nd–Zr–Al–Co alloy system. Scr. Mater. 56, 197 2007

    CAS  Article  Google Scholar 

  35. 35

    E.S. Park, J.S. Kyeong D.H. Kim: Phase separation and improved plasticity by modulated heterogeneity in Cu–(Zr, Hf)–(Gd,Y)–Al metallic glasses. Scr. Mater. 57, 49 2007

    CAS  Article  Google Scholar 

  36. 36

    E.S. Park, H.J. Chang, J.Y. Lee D.H. Kim: Improvement of plasticity by tailoring combination of constituent elements in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses. J. Mater. Res. 22, 3440 2007

    CAS  Article  Google Scholar 

  37. 37

    X.J. Gu, S.J. Poon G.J. Shiflet: Mechanical properties of iron-based bulk metallic glasses. J. Mater. Res. 22, 344 2007

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Global Research Laboratory Program of the Korean Ministry of Science. E.S. Park was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD; grant KRF-2006-214-D00066). The authors are indebted to Prof. Frans Spaepen, Harvard University, for thoughtful advice.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E.S. Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, E., Chang, H., Kyeong, J. et al. Role of minor addition of metallic alloying elements in formation and properties of Cu–Ti-rich bulk metallic glasses. Journal of Materials Research 23, 1995–2002 (2008). https://doi.org/10.1557/JMR.2008.0246

Download citation