Preparation of silver spheres by aggregation of nanosize subunits


Dispersed uniform spherical silver particles were prepared in the absence of a protective colloid by rapidly mixing concentrated isoascorbic acid and silver-polyamine complex solutions. By varying the nature of the amine, temperature, concentration of reactants, silver/amine molar ratio, and the nature of the silver salt, it was possible to tailor the size of the resulting metallic particles in a wide range (80 nm to 1.3 μm). The silver spheres were formed by aggregation of nanosize subunits, the presence of which was detected by both electron microscopy and x-ray diffraction. Due to its simplicity, high metal concentration, and the absence of polymeric dispersants, the described method represents an advantageous route to manufacture cost-effectively dispersed uniform silver particles for electronic applications.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13


  1. 1

    H. Sasao, H. Nakahara, T. Nanto, A. Otsuka, N. Awaji, K. Betsui S. Tadaki: Plasma display panel and method of manufacturing same. U.S. Patent No. 6 242 860 (2001)

    Google Scholar 

  2. 2

    H. Kanda, J.D. Smith T.R. Suess: Plasma display panel device fabrication utilizing black electrode between substrate and conductor electrode. U.S. Patent No. 5 851 732 (1998)

    Google Scholar 

  3. 3

    T. Shinoda, N. Awaji, S. Kanagu, T. Kanae, M. Wakitani, T. Nanto M. Miyahara: Full color surface discharge type plasma display device. U.S. Patent No. 5 661 500 (1997)

    Google Scholar 

  4. 4

    Y.H. Kim, T.S. Oh C.B. Lee: Method for manufacturing multi-layer ceramic capacitor. U.S. Patent No. 5 311 651 (1994)

    Google Scholar 

  5. 5

    C.R.S. Needes: Thick film silver metallizations for silicon solar cells. U.S. Patent No. 4 235 644 (1980)

    Google Scholar 

  6. 6

    A. Bhatt, R.H. Magnuson, V.R. Markovich D.O. Powell: Method of preparing a printed circuit board. U.S. Patent No. 5 557 844 (1996)

    Google Scholar 

  7. 7

    W. Songping: Preparation of micron size flake silver powders for conductive thick films. J. Mater. Sci.: Mater. Electron. 18, 447 2007

    Google Scholar 

  8. 8

    Y. Ohno: Display panel having conductive contact media. U.S. Patent No. 4 600 273 (1986)

    Google Scholar 

  9. 9

    J. Widoniak, S. Eiden-Assmann G. Maret: Silver particles tailoring of shapes and sizes. Colloids Surf. A: Physicochem. Eng. Aspects 270, 340 2005

    Article  Google Scholar 

  10. 10

    L. Suber, I. Sondi, E. Matijević D.V. Goia: Preparation and the mechanisms of formation of silver particles of different morphologies in homogenous solutions. J. Colloid Interface Sci. 288, 489 2005

    CAS  Article  Google Scholar 

  11. 11

    I. Sondi, D.V. Goia E. Matijević: Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J. Colloid Interface Sci. 260, 75 2003

    CAS  Article  Google Scholar 

  12. 12

    K.P. Velikov, G.E. Zegers A. van Blaaderen: Synthesis and characterization of large colloidal silver particles. Langmuir 19, 1384 2003

    CAS  Article  Google Scholar 

  13. 13

    W. Songping M. Shuyuan: Preparation of ultrafine silver powder using ascorbic acid as reducing agent and its application in MLCI. Mater. Chem. Phys. 89, 423 2005

    Article  Google Scholar 

  14. 14

    Y. Xie, R. Ye H. Liu: Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactants. Colloids Surf. A: Physicochem. Eng. Aspects 279, 175 2006

    CAS  Article  Google Scholar 

  15. 15

    T. Sato, T. Ichikawa, T. Ito, Y. Yonezawa, K. Kadono, T. Sakaguchi M. Miya: Nonlinear optical properties of silver sols prepared by photoreduction method. Chem. Phys. Lett. 242, 310 1995

    CAS  Article  Google Scholar 

  16. 16

    Y. Kashiwagi, M. Yamamoto M. Nakamoto: Facile size-regulated synthesis of silver nanoparticles by controlled thermolysis of silver alkylcarboxylates in the presence of alkylamines with different chain lengths. J. Colloid Interface Sci. 300, 169 2006

    CAS  Article  Google Scholar 

  17. 17

    J.A. Jacob, S. Kapoor, N. Biswas T. Mukherjee: Size tunable synthesis of silver nanoparticles in water-ethylene glycol mixtures. Colloids Surf. A: Physicochem. Eng. Aspects 301, 329 2007

    CAS  Article  Google Scholar 

  18. 18

    M. Popa, T. Pradell, D. Crespo J.M. Calderon-Moreno: Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids Surf. A: Physicochem. Eng. Aspects 303, 184 2007

    CAS  Article  Google Scholar 

  19. 19

    A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V.K. Sharma, T. Nevecna R. Zboril: Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110, 16248 2006

    CAS  Article  Google Scholar 

  20. 20

    W. Song, H. Jia, Q. Cang B. Zhao: Silver microflowers and large spherical particles: Controlled preparation and their wetting properties. J. Colloid Interface Sci. 311, 456 2007

    CAS  Article  Google Scholar 

  21. 21

    F.A. Cotton F.E. Harris: The thermodynamics of chelate formation. I. Experimental determination of enthalpies and entropies in diamine-metal ion systems. J. Phys. Chem. 59, 1203 1955

    CAS  Article  Google Scholar 

  22. 22

    L.C. Van Poucke: The thermodynamics of ethylene-diamine complexes of silver. Talanta 23, 161 1976

    Article  Google Scholar 

  23. 23

    P. Paoletti: Formation of metal complexes with ethylenediamine: A critical survey of equilibrium constants, enthalpy and entropy values. Pure Appl. Chem. 56, 491 1984

    Article  Google Scholar 

  24. 24

    R.T. Herrin, A.W. Andren D.E. Armstrong: Determination of silver speciation in natural waters I. Laboratory tests of Chelex-100 chelating resin as a competing ligand. Environ. Sci. Technol. 35, 1953 2001

    CAS  Article  Google Scholar 

  25. 25

    I.J. Newman D. Washburn: Ionic silver complex. U.S. Patent No. 6 838 095 (2005)

    Google Scholar 

  26. 26

    S. Zhong, T. Chen, S.K. Aggarwal S-H. Su: Method for silver staining a pathologic sample. U.S. Patent No. 6 426 195, 2002

    Google Scholar 

  27. 27

    V. Privman, D. Goia, J. Park E. Matijević: Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors. J. Colloid Interface Sci. 213, 36 1999

    CAS  Article  Google Scholar 

  28. 28

    J. Park, V. Privman E. Matijević: Model of formation of monodispersed colloids. J. Phys. Chem. B 105, 11630 2001

    CAS  Article  Google Scholar 

  29. 29

    I. Halaciuga, D.T. Robb, V. Privman D.V. Goia: Computational model for the production of monodisperse silver spheres in solution, (unpublished)

  30. 30

    J.P. Kratohvil, M. Orhanović E. Matijević: Coagulation of lyophobic colloids in mixed solvents. Influence of the dielectric constant. J. Phys. Chem. 64, 1216 1960

    CAS  Article  Google Scholar 

  31. 31

    D.V. Goia: Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions. J. Mater. Chem. 14, 451 2003

    Article  Google Scholar 

Download references


This work was funded in part by National Science Foundation Grant No. DMR-0509104.

Author information



Corresponding author

Correspondence to Dan V. Goia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Halaciuga, I., Goia, D.V. Preparation of silver spheres by aggregation of nanosize subunits. Journal of Materials Research 23, 1776–1784 (2008).

Download citation