Energetics of ZnO nanoneedles: Surface enthalpy, stability, and growth

Abstract

The surface enthalpy of ZnO nanoneedles has been measured by oxide melt solution calorimetry of samples with different surface areas. Water adsorption calorimetry was carried out to characterize the stabilization effect of surface hydration. The surface enthalpies of hydrated and anhydrous surfaces (8.21 ± 0.67 and 9.81 ± 0.69 J/m2, respectively) are larger than those of nanorods. The less stable surface of nanoneedles provides a driving force for the transformation of nanoneedles into nanorods during aging. The formation of bushlike assemblies of nanoneedles is also discussed.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
TABLE I.
FIG. 3
TABLE II.
FIG. 4

References

  1. 1

    H.Y. Yang, S.P. Lau, S.F. Yu, A.P. Abiyasa, M. Tanemura, T. Okita H. Hatano: High-temperature random lasing in ZnO nanoneedles. Appl. Phys. Lett. 89, 011103 2006

    Article  Google Scholar 

  2. 2

    B.Q. Cao, W. Cai H. Zeng: Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays. Appl. Phys. Lett. 88, 161101 2006

    Article  Google Scholar 

  3. 3

    H.Y. Yang, S.P. Lau, S.F. Yu, L. Huang, M. Tanemura, J. Tanaka, T. Okita H.H. Hng: Field emission from zinc oxide nanoneedles on plastic substrates. Nanotechnology 16, 1300 2005

    CAS  Article  Google Scholar 

  4. 4

    Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang D.P. Yu: Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83, 144 2003

    CAS  Article  Google Scholar 

  5. 5

    L.F. Dong, J. Jiao, D.W. Tuggle, J.M. Petty, S.A. Elliff M. Coulter: ZnO nanowires formed on tungsten substrates and their electron field emission properties. Appl. Phys. Lett. 82, 1096 2003

    CAS  Article  Google Scholar 

  6. 6

    Y.K. Tseng, C.J. Huang, H.M. Cheng, I.N. Lin, K.S. Liu I.C. Chen: Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Adv. Funct. Mater. 13, 811 2003

    CAS  Article  Google Scholar 

  7. 7

    J. Zhou, L. Gong, S.Z. Deng, J. Chen, J.C. She, N.S. Xu, R.S. Yang Z.L. Wang: Growth and field-emission property of tungsten oxide nanotip arrays. Appl. Phys. Lett. 87, 223108 2005

    Article  Google Scholar 

  8. 8

    X.F. Wu, G.W. Lu, C. Li G.Q. Shi: Room-temperature fabrication of highly oriented ZnO nanoneedle arrays by anodization of zinc foil. Nanotechnology 17, 4936 2006

    CAS  Article  Google Scholar 

  9. 9

    B.Q. Cao, W.P. Cai, G.T. Duan, Y. Li, Q. Zhao D.P. Yu: A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field-emission properties. Nanotechnology 16, 2567 2005

    CAS  Article  Google Scholar 

  10. 10

    Z. Zhang, H. Yuan, J. Zhou, D. Liu, S. Luo, Y. Miao, Y. Gao, J. Wang, L. Liu, L. Song, Y. Xiang, X. Zhao, W. Zhou S. Xie: Growth mechanism, photoluminescence, and field-emission properties of ZnO nanoneedle arrays. J. Phys. Chem. B 110, 8566 2006

    CAS  Article  Google Scholar 

  11. 11

    J.Y. Park, J.M. Lee, J.H. Je S.S. Kim: Early stage growth behavior of ZnO nanoneedle arrays on Al2O3(0001) by metalorganic chemical vapor deposition. J. Cryst. Growth 281, 446 2005

    CAS  Article  Google Scholar 

  12. 12

    X.F. Wu, H. Bai, C. Li, G.W. Lu G.Q. Shi: Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature. Chem. Comm. 1655, 2006

    Google Scholar 

  13. 13

    Y.C. Chang L.J. Chen: ZnO nanoneedles with enhanced and sharp ultraviolet cathodoluminescence peak. J. Phys. Chem. C 111, 1268 2007

    CAS  Article  Google Scholar 

  14. 14

    B. Liu H.C. Zeng: Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20, 4196 2004

    CAS  Article  Google Scholar 

  15. 15

    A. Navrotsky: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 1997

    CAS  Article  Google Scholar 

  16. 16

    J.M. McHale, A. Auroux, A.J. Perrotta A. Navrotsky: Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788 1997

    CAS  Article  Google Scholar 

  17. 17

    A.A. Levchenko, G.S. Li, J. Boerio-Goates, B.F. Woodfield A. Navrotsky: TiO2 stability landscape: Polymorphism, surface energy, and bound water energetics. Chem. Mater. 18, 6324 2006

    CAS  Article  Google Scholar 

  18. 18

    M.W. Pitcher, S.V. Ushakov, A. Navrotsky, B.F. Woodfield, G.S. Li, J. Boerio-Goates B.M. Tissue: Energy crossovers in nanocrystalline zirconia. J. Am. Ceram. Soc. 88, 160 2005

    CAS  Article  Google Scholar 

  19. 19

    L. Mazeina A. Navrotsky: Enthalpy of water adsorption and surface enthalpy of goethite (alpha-FeOOH) and hematite (alpha-Fe2O3). Chem. Mater. 19, 825 2007

    CAS  Article  Google Scholar 

  20. 20

    P. Zhang, A. Navrotsky, B. Guo, I. Kennedy, A.N. Clark, C. Lesher Q. Liu: Energetics of cubic and monoclinic yttrium oxide polymorphs: Phase transitions, surface enthalpies, and stability at the nanoscale. J. Phys. Chem. C 112, 932 2008

    CAS  Article  Google Scholar 

  21. 21

    PDF No. 36-1451. H.F. McMurdie, M.C. Morris, E.H. Evans, B. Paretzkin, W. Wong-Ng, L. Ettlinger C.R. Hubbard: Standard x-ray diffraction patterns from the JCPDS research associateship. Powder Diffraction 1, 76 1986

  22. 22

    P. Zhang, F. Xu, A. Navrotsky, J.S. Lee, S. Kim J. Liu: Surface enthalpies of nanophase ZnO with different morphologies. Chem. Mater. 19, 5687 2007

    CAS  Article  Google Scholar 

  23. 23

    Y.B. Li, Y. Bando D. Golberg: ZnO nanoneedles with tip surface perturbations: Excellent field emitters. Appl. Phys. Lett. 84, 3603 2004

    CAS  Article  Google Scholar 

  24. 24

    C.H. Hung W.T. Whang: Low-temperature solution approach toward highly aligned ZnO nanotip arrays. J. Cryst. Growth 268, 242 2004

    CAS  Article  Google Scholar 

  25. 25

    A. Navrotsky: Nanoparticles and the Environment Mineralogical Society of America Washington, DC 2001 73

    Google Scholar 

  26. 26

    G.A. Somorjai: Introduction to Surface Chemistry and Catalysis John Wiley & Sons, Inc. New York 1994

    Google Scholar 

  27. 27

    Z.R.R. Tian, J.A. Voigt, J. Liu, B. McKenzie M.J. McDermott: Biomimetic arrays of oriented helical ZnO nanorods and columns. J. Am. Chem. Soc. 124, 12954 2002

    CAS  Article  Google Scholar 

  28. 28

    Z.Z. Ye, J.Y. Huang, W.Z. Xu, J. Zhou Z.L. Wang: Catalyst-free MOCVD growth of aligned ZnO nanotip arrays on silicon substrate with controlled tip shape. Solid State Commun. 141, 464 2007

    CAS  Article  Google Scholar 

  29. 29

    S.V. Ushakov A. Navrotsky: Direct measurements of water adsorption enthalpy on hafnia and zirconia. Appl. Phys. Lett. 87, 164103 2005

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by United States Department of Energy (DOE) Grant FG-031ER15237.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexandra Navrotsky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, P., Lee, T., Xu, F. et al. Energetics of ZnO nanoneedles: Surface enthalpy, stability, and growth. Journal of Materials Research 23, 1652–1657 (2008). https://doi.org/10.1557/JMR.2008.0216

Download citation