High ductility of ultrafine-grained steel via phase transformation


There is often a tradeoff between strength and ductility, and the low ductility of ultrafine-grained (UFG) materials has been a major obstacle to their practical structural applications despite their high strength. In this study, we have achieved a ∼40% tensile ductility while increasing the yield strength of FeCrNiMn steel by an order of magnitude via grain refinement and deformation-induced martensitic phase transformation. The strain-rate effect on the inhomogeneous deformation behavior and phase transformation was studied in detail.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9


  1. 1

    R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer Y.T. Zhu: Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58, 33 2006

    Article  Google Scholar 

  2. 2

    G.W. Nieman, J.R. Weertman R.W. Siegel: Microhardness of nanocrystalline palladium and copper produced by inert-gas condensation. Scripta Metall. 23, 2013 1989

    CAS  Article  Google Scholar 

  3. 3

    L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian K. Lu: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 2004

    CAS  Article  Google Scholar 

  4. 4

    H.Q. Li F. Ebrahimi: Tensile behavior of a nanocrystalline Ni–Fe alloy. Acta Mater. 54, 2877 2006

    CAS  Article  Google Scholar 

  5. 5

    K.M. Youssef, R.O. Scattergood, K.L. Murty, J.A. Horton C.C. Koch: Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl. Phys. Lett. 87, 091904 2005

    Article  Google Scholar 

  6. 6

    S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz K. Han: Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater. 53, 1521 2005

    CAS  Article  Google Scholar 

  7. 7

    Y.M. Wang E. Ma: Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52, 1699 2004

    CAS  Article  Google Scholar 

  8. 8

    M.C. Zhao, F.X. Yin, T. Hanamura, K. Nagai A. Atrens: Relationship between yield strength and grain size for a bimodal structural ultrafine-grained ferrite/cementite steel. Scripta Mater. 57, 857 2007

    CAS  Article  Google Scholar 

  9. 9

    R. Song, D. Ponge D. Raabe: Improvement of the work hardening rate of ultrafine grained steels through second phase particles. Scripta Mater. 52, 1075 2005

    CAS  Article  Google Scholar 

  10. 10

    A. Ohmori, S. Torizuka K. Nagai: Strain-hardening due to dispersed cementite for low carbon ultrafine-grained steels. ISIJ Inter. 44, 1063 2004

    CAS  Article  Google Scholar 

  11. 11

    Y.K. Lee, J.E. Jin Y.Q. Ma: Transformation-induced extraordinary ductility in an ultrafine-grained alloy with nanosized precipitates. Scripta Mater. 57, 707 2007

    CAS  Article  Google Scholar 

  12. 12

    Y.Z. Zhou, W. Zhang, B.Q. Wang, G.H. He J.D. Guo: Grain refinement and formation of ultrafine-grained microstructure in a low-carbon steel under electropulsing. J. Mater. Res. 17, 2105 2002

    CAS  Article  Google Scholar 

  13. 13

    N. Tsuji, R. Ueji, Y. Minamino Y. Saito: A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property. Scripta Mater. 46, 305 2002

    CAS  Article  Google Scholar 

  14. 14

    K. Sugimoto, N. Usui, M. Kobayashi S. Hashimoto: Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels. ISIJ Int. 32, 1311 1992

    CAS  Article  Google Scholar 

  15. 15

    O. Matsumura, Y. Sakuma H. Takechi: TRIP and its kinetic aspects in austempered 0.4C–1.5Si–0.8Mn steel. Scripta Metall. 21, 1301 1987

    CAS  Article  Google Scholar 

  16. 16

    Y.Q. Ma, J.E. Jin Y.K. Lee: A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scripta Mater. 52, 1311 2005

    CAS  Article  Google Scholar 

  17. 17

    Y.Q. Ma, J.E. Jin Y.K. Lee: Grain refinement and mechanical properties of a metastable austenitic Fe–Cr–Ni–Mn alloy. Mater. Sci. Forum 475, 43 2005

    Article  Google Scholar 

  18. 18

    J.Y. Huang, Y.T. Zhu, H.G. Jiang T.C. Lowe: Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 49, 1497 2001

    CAS  Article  Google Scholar 

  19. 19

    K. Tao, H. Choo, H. Li, B. Clausen, J.E. Jin Y.K. Lee: Transformation-induced plasticity in an ultrafine-grained steel: An in situ neutron diffraction study. Appl. Phys. Lett. 90, 101911 2007

    Article  Google Scholar 

  20. 20

    J. Bouquerel, K. Verbeken B.C. de Cooman: Microstructure-based model for the static mechanical behaviour of multiphase steels. Acta Mater. 54, 1443 2006

    CAS  Article  Google Scholar 

  21. 21

    A. Duckham, D.Z. Zhang, D. Liang, V. Luzin, R.C. Cammarata, R.L. Leheny, C.L. Chien T.P. Weihs: Temperature dependent mechanical properties of ultra-fine grained FeCo–2V. Acta Mater. 51, 4083 2003

    CAS  Article  Google Scholar 

  22. 22

    S.J. Xie, P.K. Liaw H. Choo: Tensile behavior and deformation mechanisms of bulk ultrafine-grained copper. J. Mater. Sci. 41, 6328 2006

    CAS  Article  Google Scholar 

  23. 23

    A. Hasnaoui, H. Van Swygenhoven P.M. Derlet: Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation. Science 300, 1550 2003

    CAS  Article  Google Scholar 

  24. 24

    Y.M. Wang, E. Ma M.W. Chen: Enhanced tensile ductility and toughness in nanostructured Cu. Appl. Phys. Lett. 80, 2395 2002

    CAS  Article  Google Scholar 

  25. 25

    K.S. Kumar, H. Van Swygenhoven S. Suresh: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 2003

    CAS  Article  Google Scholar 

Download references


This work is supported by the National Science Foundation Major Research Instrumentation (MRI) Program (DMR-0421219) and International Materials Institutes (IMI) Program (DMR-0231320) with Dr. C. Bouldin and Dr. C. Huber as the Program Directors, respectively. X-L. Wang acknowledges support by Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, United States Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. Y.H. Zhao and Y.T. Zhu were supported by the DOE Initiatives for Proliferation Prevention (IPP) program.

Author information



Corresponding authors

Correspondence to H. Choo or Y.K. Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheng, S., Choo, H., Zhao, Y. et al. High ductility of ultrafine-grained steel via phase transformation. Journal of Materials Research 23, 1578–1586 (2008). https://doi.org/10.1557/JMR.2008.0213

Download citation