Skip to main content
Log in

Organic light-emitting diodes with hydrogenated In-doped ZnO thin films as transparent conductive electrodes

Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hydrogenated In-doped ZnO (ZIO:H) films grown at different ratios, R, of hydrogen to argon were deposited at a substrate temperature of 100 °C for the organic light-emitting diodes (OLEDs). The OLEDs with the ZIO:H (R = 0.08) anode achieved a maximum luminance efficiency of 3.4 cd/A and a power efficiency of 0.6 lm/W, which are as good as the values of the control device fabricated on a tin-doped indium oxide (ITO) anode. This indicates that the efficiency of the OLEDs is critically affected by the ratio of injected hydrogen gas during the deposition of the ZIO and that the ZIO:H developed herein is promising as an alternative to conventional ITO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
TABLE I.
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. K. Kawano, N. Ito, T. Nishimori J. Sakai: Open circuit voltage of stacked bulk heterojunction organic solar cells. Appl. Phys. Lett. 88, 073514 2006

    Article  Google Scholar 

  2. H. Kim, J.S. Horwitz, W.H. Kim, A.J. Makinen, Z.H. Kafafi D.B. Chrisey: Doped ZnO thin films as anode materials for organic light-emitting diodes. Thin Solid Films 420–421, 539 2002

    Article  Google Scholar 

  3. H. Kim, J.S. Horwitz, G.P. Kushuto, S.B. Qadri, Z.H. Kafafi D.B. Chrisey: Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes. Appl. Phys. Lett. 78, 1050 2001

    Article  CAS  Google Scholar 

  4. Y. He J. Kanicki: High-efficiency organic polymer light-emitting heterostructure devices on flexible plastic substrates. Appl. Phys. Lett. 76, 661 2000

    Article  CAS  Google Scholar 

  5. A. Yamamori, S. Hayashi, T. Koyama Y. Taniguchi: Transparent organic light-emitting diodes using metal acethylacetonate complexes as an electron injective buffer layer. Appl. Phys. Lett. 78, 3343 2001

    Article  CAS  Google Scholar 

  6. S. Homma, A. Miyamoto, S. Sakamoto, K. Kishi, N. Motoi K. Yoshimura: Pulmonary fibrosis in an individual occupationally exposed to inhaled indium-tin oxide. Eur. Respir. J. 25, 200 2005

    Article  CAS  Google Scholar 

  7. T. Homma, T. Ueno, K. Sekizawa, A. Tanaka M. Hirata: Interstitial pneumonia developed in a worker dealing with particles containing indium-tin oxide. J. Occup. Health 45, 137 2003

    Article  Google Scholar 

  8. H. Kim, C.M. Gilmore, J.S. Horwitz, A. Pique, H. Murata, G.P. Kushto, R. Schlaf, Z.H. Kafafi D.B. Chrisey: Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Appl. Phys. Lett. 76, 259 2000

    Article  CAS  Google Scholar 

  9. S.M. Park, T. Ikegami K. Ebilhara: Investigation of transparent conductive oxide Al-doped ZnO films produced by pulsed laser deposition. Jpn. J. Appl. Phys. 44, 8027 2005

    Article  CAS  Google Scholar 

  10. X. Jiang, F.L. Wong, M.K. Fung S.T. Lee: Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl. Phys. Lett. 83, 1875 2003

    Article  CAS  Google Scholar 

  11. H. Kim, J.S. Horwitz, W.H. Kim, S.B. Qadri Z.H. Kafafi: Anode material based on Zr-doped ZnO thin films for organic light-emitting diodes. Appl. Phys. Lett. 83, 3809 2003

    Article  CAS  Google Scholar 

  12. J. Hu R.G. Gordon: Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition. J. Appl. Phys. 71, 880 1992

    Article  CAS  Google Scholar 

  13. J.H. Kang, Y.R. Park K.J. Kim: Spectroscopic ellipsometry study of Zn1–xMgxO thin films deposited on Al2O3(0001). Solid State Commun. 115, 127 2000

    Article  CAS  Google Scholar 

  14. K.J. Kim Y.R. Park: Large and abrupt optical band gap variation in In-doped ZnO. Appl. Phys. Lett. 78, 475 2001

    Article  CAS  Google Scholar 

  15. S.H. Jeong, B.N. Park, D.G. Yoo, J.H. Boo D.J. Jung: Al-ZnO Thin films as transparent conductive oxides: Synthesis, characterization, and application tests. Korean Phys. Soc. 50, 622 2007

    Article  CAS  Google Scholar 

  16. S.B. Qadri, H. Kim, J.S. Horwitz D.B. Chrisey: Transparent conducting films of ZnO–ZrO2: Structure and properties. J. Appl. Phys. 88, 6564 2005

    Article  Google Scholar 

  17. J.H. Kim, B.D. Ahn, C.H. Lee, K.A. Jeon, H.S. Kang S.Y. Lee: Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature. J. Appl. Phys. 100, 113515 2005

    Article  Google Scholar 

  18. C.G. Van de Walle: Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012 2000

    Article  Google Scholar 

  19. C.G. Van de Walle J. Neugebauer: Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626 2003

    Article  Google Scholar 

  20. S.Y. Myong K.S. Lim: Highly stable and textured hydrogenated ZnO thin films. Appl. Phys. Lett. 82, 3206 2003

    Article  Google Scholar 

  21. A. Janotti C.G. Van de Walle: Hydrogen multicentre bonds. Nat. Mater. 6, 44 2007

    Article  CAS  Google Scholar 

  22. S.Y. Myong K.S. Lim: Alternate deposition and hydrogen doping technique for ZnO thin films. J. Cryst. Growth 293, 253 2006

    Article  CAS  Google Scholar 

  23. E.V. Lavrov, J. Weber, F. Borrnert, C.G. Van de Walle R. Helbig: Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Phys. Rev. B 66, 165205 2002

    Article  Google Scholar 

  24. E.V. Lavrov, J. Weber, F. Borrnert, C.G. de Van Walle R. Helbig: Dominant hydrogen-oxygen complex in hydrothermally grown ZnO. Phys. Rev. B 71, 035205 2005

    Article  Google Scholar 

  25. M.D. McCluskey, S.J. Jokela, K.K. Zhuraviev, P.J. Simson K.G. Lynn: Infrared spectroscopy of hydrogen in ZnO. Appl. Phys. Lett. 81, 3807 2002

    Article  CAS  Google Scholar 

  26. C.A. Wolden, T.M. Barnes, J.B. Baxter E.S. Aydil: Infrared detection of hydrogen-generated free carriers in polycrystalline ZnO thin films. J. Appl. Phys. 97, 043522 2005

    Article  Google Scholar 

  27. X. Li, B. Keyes, S. Asher, S.B. Zhang, S.H. Wei, T.J. Coutts, S.L. Limpijumnong C.G. Van de Walle: Hydrogen passivation effect in nitrogen-doped ZnO thin films. Appl. Phys. Lett. 86, 122107 2005

    Article  Google Scholar 

  28. Y. Takahashi, M. Kanamori, A. Kondon, H. Minoura Y. Ohya: Photoconductivity of ultrathin zinc oxide films. Jpn. J. Appl. Phys. 33, 6611 1994

    Article  CAS  Google Scholar 

  29. B. Sang, K. Dairiki, A. Yamada M. Konagai: High-efficiency amorphous silicon solar cells with ZnO as front contact. Jpn. J. Appl. Phys. 38, 4983 1999

    Article  CAS  Google Scholar 

  30. M.G. Wardle, J.P. Goss P.R. Briddon: Theory of Fe, Co, Ni, Cu, and their complexes with hydrogen in ZnO. Phys. Rev. B 72, 155108 2005

    Article  Google Scholar 

  31. E. Ziegler, A. Heinrich, H. Oppermann G. Stover: Electrical properties and non-stoichiometry in ZnO single crystals. Phys. Status Solidi A 66, 635 1981

    Article  CAS  Google Scholar 

  32. E. Burstein: Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632 1954

    Article  CAS  Google Scholar 

  33. T.S. Moss: The interpretation of the properties of indium Antimonide. Proc. Phys. Soc. (London), Ser. B 67, 775 1954

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by a Korea Research Foundation grant (Grant KRF-2005-005-J11902) funded by the Korean Government (Ministry of Education & Human Resources Development-MOEHRD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Sung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y.R., Kim, Y.S. Organic light-emitting diodes with hydrogenated In-doped ZnO thin films as transparent conductive electrodes. Journal of Materials Research 23, 1674–1681 (2008). https://doi.org/10.1557/JMR.2008.0207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0207

Navigation