Skip to main content
Log in

Oxidation behavior of pressureless liquid-phase-sintered α-SiC in ambient air at elevated temperatures

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The long-duration oxidation behavior of a pressureless liquid-phase-sintered (LPS) α-SiC with 10 vol% Y3Al5O12 additives was studied by furnace oxidation tests in ambient air at 1100 to 1450 °C. The oxidation of this LPS SiC ceramic was found to be passive throughout these temperatures due to the formation of oxide scales, with a change in the oxidation behavior occurring at 1350 °C. It was also found that the oxidation behavior is very complex, exhibiting two distinct stages at all temperatures: (i) initial nonparabolic oxidation, where the rate-limiting mechanism is the outward diffusion of Y3+ and Al3+ cations from the secondary intergranular phase into the oxide scale with the activation energy of the oxidation being 504 ± 32 kJ/mol, followed by (ii) parabolic oxidation below 1350 °C, where the rate-determining mechanism is the inward diffusion of oxygen through the oxide scale with the activation energy being 310 ± 47 kJ/mol, or paralinear oxidation at and above 1350 °C, where oxidation is controlled by some mixed reaction/diffusion process. The existence of two oxidation regimes reflects the progressive crystallization of the oxide scale during the oxidation. Finally, guidelines are provided for the design and fabrication of low-cost, highly oxidation-resistant LPS SiC or other LPS nonoxide ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. N.P. Padture: In situ-toughened silicon-carbide. J. Am. Ceram. Soc. 77, 519 1994

    Article  CAS  Google Scholar 

  2. L.S. Sigl: Thermal conductivity of liquid-phase-sintered silicon carbide. J. Eur. Ceram. Soc. 23, 1115 2003

    Article  CAS  Google Scholar 

  3. Y-W. Kim, M. Mitomo T. Nishimura: High-temperature strength of liquid-phase-sintered SiC with AlN and RE2O3 (RE = Y, Yb). J. Am. Ceram. Soc. 85, 1007 2002

    Article  CAS  Google Scholar 

  4. A.L. Ortiz, A. Muñoz-Bernabé, O. Borrero-López, A. Domínguez-Rodríguez, F. Guiberteau N.P. Padture: Effect of sintering atmosphere on the mechanical properties of liquid-phase-sintered SiC. J. Eur. Ceram. Soc. 24, 3245 2004

    Article  CAS  Google Scholar 

  5. A. Gallardo-López, A. Muñoz, J. Martínez-Fernández A. Domínguez-Rodríguez: High-temperature compressive creep of liquid-phase-sintered silicon carbide. Acta Mater. 47, 2185 1999

    Article  Google Scholar 

  6. O. Borrero-López, A.L. Ortiz, F. Guiberteau N.P. Padture: Effect of microstructure on sliding-wear properties of liquid-phase-sintered α-SiC. J. Am. Ceram. Soc. 88, 2159 2005

    Article  CAS  Google Scholar 

  7. O. Borrero-López, A.L. Ortiz, F. Guiberteau N.P. Padture: Improved sliding-wear resistance in in situ-toughened silicon carbide. J. Am. Ceram. Soc. 88, 3531 2005

    Article  CAS  Google Scholar 

  8. J.J. Meléndez-Martínez, M. Castillo-Rodríguez, A. Domínguez-Rodríguez, A.L. Ortiz F. Guiberteau: Creep and microstructural evolution at high-temperature of liquid-phase-sintered silicon carbide. J. Am. Ceram. Soc. 90, 163 2007

    Article  CAS  Google Scholar 

  9. O. Borrero-López, A.L. Ortiz, F. Guiberteau N.P. Padture: Sliding-wear-resistant liquid-phase-sintered SiC processed using α-SiC starting powders. J. Am. Ceram. Soc. 90, 541 2007

    Article  CAS  Google Scholar 

  10. O. Borrero-López, A.L. Ortiz, F. Guiberteau N.P. Padture: Effect of liquid-phase content on the contact mechanical properties of liquid-phase-sintered α-SiC. J. Eur. Ceram. Soc. 27, 2521 2007

    Article  CAS  Google Scholar 

  11. O. Borrero-López, A.L. Ortiz, F. Guiberteau N.P. Padture: Microstructural design of sliding-wear-resistant liquid-phase-sintered SiC: An overview. J. Eur. Ceram. Soc. 27, 3351 2007

    Article  CAS  Google Scholar 

  12. O. Borrero-López, A.L. Ortiz, F. Guiberteau N.P. Padture: Effect of nature of intergranular phase on sliding-wear resistance of liquid-phase-sintered α-SiC. Scripta Mater. 57, 505 2007

    Article  CAS  Google Scholar 

  13. N.P. Padture B.R. Lawn: Toughness properties of a silicon-carbide with an in-situ induced heterogeneous grain-structure. J. Am. Ceram. Soc. 77, 2518 1994

    Article  CAS  Google Scholar 

  14. B.R. Lawn, N.P. Padture, H. Cai F. Guiberteau: Making ceramics ductile. Science 263, 1114 1994

    Article  CAS  Google Scholar 

  15. S.K. Lee C.H. Lee: Effects of alpha-SiC versus beta-SiC starting powders on microstructure and fracture-toughness of SiC sintered with Al2O3–Y2O3 additives. J. Am. Ceram. Soc. 77, 1655 1994

    Article  Google Scholar 

  16. M.A. Mulla V.D. Krstic: Mechanical-properties of beta-SiC pressureless sintered with Al2O3 additions. Acta Metall. Mater. 42, 303 1994

    Article  CAS  Google Scholar 

  17. J. Sánchez-González, A.L. Ortiz, F. Guiberteau C. Pascual-Centenera: Complex impedance spectroscopy study of a liquid-phase-sintered α-SiC. J. Eur. Ceram. Soc. 27, 3941 2007

    Article  CAS  Google Scholar 

  18. J. Ihle, H-P. Martin, M. Herrmann, P. Obenaus, J. Adler, W. Hermel A. Michaelis: The influence of porosity on the electrical properties of liquid-phase-sintered silicon carbide. Int. J. Mater. Res. 97, 649 2006

    CAS  Google Scholar 

  19. A. Can, D.S. McLachlan, G. Sauti M. Herrmann: Relationships between microstructure and electrical properties of liquid-phase-sintered silicon carbide materials. J. Eur. Ceram. Soc. 27, 1361 2005

    Article  CAS  Google Scholar 

  20. E. Volz, A. Roosen, W. Hartung A. Winnacker: Electrical and thermal conductivity of liquid phase sintered SiC. J. Eur. Ceram. Soc. 21, 2089 2001

    Article  CAS  Google Scholar 

  21. H-J. Kleebe F. Siegelin: Schottky barrier formation in liquid-phase-sintered silicon carbide. Z. Metallkd. 94, 211 2003

    Article  CAS  Google Scholar 

  22. Z. Zheng, R.E. Tressler K.E. Spear: The effect of sodium contamination on the oxidation of single-crystal silicon carbide. Corros. Sci. 33, 545 1992

    Article  CAS  Google Scholar 

  23. Z. Zheng, R.E. Tressler K.E. Spear: The effects of Cl2− on the oxidation of single-crystal silicon carbide. Corros. Sci. 33, 557 1992

    Article  CAS  Google Scholar 

  24. Z. Zheng, R.E. Tressler K.E. Spear: A comparison of the oxidation of sodium-implanted CVD Si3N4 with the oxidation of sodium-implanted SiC-crystals. Corros. Sci. 33, 569 1992

    Article  CAS  Google Scholar 

  25. Z. Zheng, R.E. Tressler K.E. Spear: Oxidation of single-crystal silicon carbide. 1. Experimental studies. J. Electrochem. Soc. 137, 854 1990

    Article  CAS  Google Scholar 

  26. Z. Zheng, R.E. Tressler K.E. Spear: Oxidation of single-crystal silicon carbide. 2. Kinetic-model. J. Electrochem. Soc. 137, 2812 1990

    Article  CAS  Google Scholar 

  27. T. Narushima, T. Goto, Y. Iguchi T. Hirai: High-temperature oxidation of chemically vapor-deposited silicon-carbide in wet oxygen at 1823 to 1923 K. J. Am. Ceram. Soc. 73, 1580 1990

    Article  Google Scholar 

  28. G.H. Schiroky: Oxidation behavior of chemically vapor-deposited silicon-carbide. Adv. Ceram. Mater. 2, 137 1987

    Article  CAS  Google Scholar 

  29. C.E. Ramberg, G. Cruciani, K.E. Spear, R.E. Tressler C.F. Ramberg: Passive-oxidation kinetics of high-purity silicon carbide from 800 degrees to 1100 degrees C. J. Am. Ceram. Soc. 79, 2897 1996

    Article  Google Scholar 

  30. C.E. Ramberg, K.E. Spear, R.E. Tressler Y. Chinone: Oxidation behavior of CVD and single-crystal SiC at 1100 degrees C. J. Electrochem. Soc. 142, 214 1995

    Article  Google Scholar 

  31. J.A. Costello, R.E. Tressler I.S.T. Tsong: Boron redistribution in sintered alpha-SiC during thermal-oxidation. J. Am. Ceram. Soc. 64, 332 1981

    Article  CAS  Google Scholar 

  32. J.A. Costello R.E. Tressler: Oxidation-kinetics of hot-pressed and sintered alpha-SiC. J. Am. Ceram. Soc. 64, 327 1981

    Article  CAS  Google Scholar 

  33. S.C. Singhal: Oxidation-kinetics of hot-pressed silicon-carbide. J. Mater. Sci. 11, 1246 1976

    Article  CAS  Google Scholar 

  34. J.W. Hinze, W.C. Tripp H.C. Graham: High-temperature oxidation of hot-pressed silicon-carbide. Am. Ceram. Soc. Bull. 53, 396 1974

    Google Scholar 

  35. K.A. Weidenmann, G. Rixecker F. Aldinger: Liquid phase sintered silicon carbide (LPS–SiC) ceramics having remarkably high oxidation resistance in wet air. J. Eur. Ceram. Soc. 26, 2453 2006

    Article  CAS  Google Scholar 

  36. K. Biswas, G. Rixecker F. Aldinger: Effect of rare-earth cation additions on the high temperature oxidation behavior of LPS–SiC. Mater. Sci. Eng., A 374, 56 2004

    Article  CAS  Google Scholar 

  37. K. Biswas, G. Rixecker F. Aldinger: Improved high temperature properties of SiC-ceramics sintered with Lu2O3-containing additives. J. Eur. Ceram. Soc. 23, 1099 2003

    Article  CAS  Google Scholar 

  38. D-M. Liu: Oxidation of polycrystalline alpha-silicon carbide ceramic. Ceram. Int. 23, 425 1997

    Article  CAS  Google Scholar 

  39. R.P. Jensen, W.E. Luecke, N.P. Padture S.M. Wiederhorn: High-temperature properties of liquid-phase-sintered alpha-SiC. Mater. Sci. Eng., A 282, 109 2000

    Article  Google Scholar 

  40. Z.J. Shen, P.O. Kall M. Nygren: Effects of phase equilibrium on the oxidation behavior of rare-earth-doped alpha-sialon ceramics. J. Mater. Res. 14, 1462 1999

    Article  CAS  Google Scholar 

  41. L.O. Nordberg, M. Nygren, P.O. Kall Z.J. Shen: Stability and oxidation properties of RE-alpha-sialon ceramics (RE = Y, Nd, Sm, Yb). J. Am. Ceram. Soc. 81, 1461 1998

    Article  CAS  Google Scholar 

  42. L.O. Nordberg, P.O. Kall M. Nygren: A mathematical analysis of the non-parabolic oxidation behavior of alpha-sialon matrices and composites. Key Eng. Mater. 113, 39 1996

    Article  CAS  Google Scholar 

  43. J. Persson M. Nygren: The oxidation-kinetics of beta-sialon ceramics. J. Eur. Ceram. Soc. 13, 467 1994

    Article  Google Scholar 

  44. J. Persson, P.O. Kall M. Nygren: Parabolic nonparabolic oxidation-kinetics of Si3N4. J. Eur. Ceram. Soc. 12, 177 1993

    Article  CAS  Google Scholar 

  45. J. Persson, T. Ekstrom, P.O. Kall M. Nygren: Oxidation behavior and mechanical-properties of beta-sialons and mixed alpha-beta-sialons sintered with additions of Y2O3 and Nd2O3. J. Eur. Ceram. Soc. 11, 363 1993

    Article  CAS  Google Scholar 

  46. J. Persson, P.O. Kall M. Nygren: Oxidation behavior of Si3N4-based ceramics, studied by the thermogravimetric method. Therm. Acta 214, 27 1993

    Article  CAS  Google Scholar 

  47. J. Persson, P.O. Kall M. Nygren: Interpretation of the parabolic and nonparabolic oxidation behavior of silicon oxynitride. J. Am. Ceram. Soc. 75, 3377 1992

    Article  CAS  Google Scholar 

  48. H. Xu, T. Bhatia, S.A. Deshpande, N.P. Padture, A.L. Ortiz F.L. Cumbrera: Microstructural evolution in liquid-phase-sintered SiC: Part I, effect of starting powder. J. Am. Ceram. Soc. 84, 1578 2001

    Article  CAS  Google Scholar 

  49. A.L. Ortiz, F.L. Cumbrera, F. Sánchez-Bajo, F. Guiberteau, H. Xu N.P. Padture: Quantitative phase-composition analysis of liquid-phase-sintered silicon carbide using the Rietveld method. J. Am. Ceram. Soc. 83, 2282 2000

    Article  CAS  Google Scholar 

  50. T. Nagano, H. Gu, G.D. Zhan M. Mitomo: Effect of atmosphere on superplastic deformation behavior in nanocrystalline liquid-phase-sintered silicon carbide with Al2O3–Y2O3 additions. J. Mater. Sci. 37, 4419 2002

    Article  CAS  Google Scholar 

  51. L.S. Sigl H-J. Kleebe: Core/rim structure of liquid-phase-sintered silicon carbide. J. Am. Ceram. Soc. 76, 773 1993

    Article  CAS  Google Scholar 

  52. I.A. Bondar’ F.Ya. Galakhov: Phase equilibria in the system Y2O3–Al2O3–SiO2. Russ. Chem. Bull. 13(7), 1231 1964

    Article  Google Scholar 

  53. S. Guo, N. Hirosaki, H. Tanaka, Y. Yamamoto T. Nishimura: Oxidation behavior of liquid-phase sintered SiC with AlN and Er2O3 additives between 1200 °C and 1400 °C. J. Eur. Ceram. Soc. 23, 2023 2003

    Article  CAS  Google Scholar 

  54. K.G. Nickel: Corrosion of Advanced Ceramics. Measurement and Modelling. NATO ASI Series, Series E. (Applied Sciences), 267

Download references

Acknowledgments

This work was supported by the Ministerio de Ciencia y Tecnología (Government of Spain), and the Fondo Europeo de Desarrollo Regional (FEDER), under Grant Nos. CICYT MAT 2004-05971 and UNEX00-23-013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.L. Ortiz.

Appendix

Appendix

The aim of this appendix is to describe the procedure followed to model the two-stage oxidation curves. First, the oxidizing time at which the functional form in the (Δm)2t plots changed (i.e., the transition time or t0) was evaluated for all oxidizing temperatures. This was done by calculating the moment at which the numerical derivative of the (Δm)2t curves in Fig. 9 becomes constant or almost constant. (t0 was found to be close to 100 h below 1350 °C, and then decreased up to 10 h at 1450 °C). Second, the oxidation kinetics for t > t0 was described by the parabolic rate law [i.e., Eq. (3) ] below 1350 °C and by the paralinear rate law [i.e., Eq. (9)] at and above 1350 °C. To this end, the free parameters of the parabolic (k0p and b0) and paralinear (k/p, kl, and b) models were refined by nonlinear least squares fitting until the best agreement between the calculated and observed oxidation curves over the t0–500 h range was achieved. The best values of k0p and b0, or of k/p, kl, and b, were thus obtained for the oxidation curves. Third, continuity of the oxidation curve and of its derivate at t0 was imposed, which allowed the following relations between the parameters of the arctan and parabolic/paralinear models to be derived:

$${k_{\rm{p}}} = {\left( {k_{\rm{p}}^0} \right)^2}{{{t_0}} \mathord{\left/ {\vphantom {{{t_0}} {\left[ {{f^2}\left( {{t_0}k_{\rm{p}}^0 + {b_0}} \right)} \right],}}} \right. \kern-\nulldelimiterspace} {\left[ {{f^2}\left( {{t_0}k_{\rm{p}}^0 + {b_0}} \right)} \right],}}$$
((A1))
$${k_{\rm{p}}} = {\left( {\sqrt {k_{\rm{p}}^\prime } - 2{k_1}\sqrt {{t_0}} } \right)^{{2 \mathord{\left/ {\vphantom {2 {{f^2}}}} \right. \kern-\nulldelimiterspace} {{f^2}}}}},$$
((A2))

Fourth, Eqs. (A1) and (A2) were substituted individually into Eq. (4), which allowed the arctan rate law to be rewritten in the forms (in the absence of oxidation at t = 0):

((A3))

below 1350 °C, and:

((A4))

at and above 1350 °C. Fifth, the free parameters of the arctan model (β and f, because t0, k0p, and b0 or t0, k/p, kl, and b were determined previously) were refined by nonlinear least squares fitting until the best agreement between the calculated and observed oxidation curves over the 0–t0 range was achieved. The best values of β and f were thus obtained for each oxidation curve. Last, the rate constants kp below and at and above 1350 °C were determined with the inputs of the β, f, t0, k0p, and b0 or of β, f, t0, k/p, kl, and b into Eqs. (A1) and (A2), respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Rojas, F., Borrero-López, O., Ortiz, A. et al. Oxidation behavior of pressureless liquid-phase-sintered α-SiC in ambient air at elevated temperatures. Journal of Materials Research 23, 1689–1700 (2008). https://doi.org/10.1557/JMR.2008.0196

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0196

Navigation