Apatite-inducing ability of titanium oxide layer on titanium surface: The effect of surface energy

Abstract

In the present study, pure titanium (Ti) plates were firstly treated to form various types of oxide layers on the surface and then were immersed into simulated body fluid (SBF) to evaluate the apatite-forming ability. The surface morphology and roughness of the different oxide layers were measured by atomic force microscopy (AFM), and the surface energies were determined based on the Owens–Wendt (OW) methods. It was found that Ti samples after alkali heat (AH) treatment achieved the best apatite formation after soaking in SBF for three weeks, compared with those without treatment, thermal or H2O2 oxidation. Furthermore, contact angle measurement revealed that the oxide layer on the alkali heat treated Ti samples possessed the highest surface energy. The results indicate that the apatite-inducing ability of a titanium oxide layer links to its surface energy. Apatite nucleation is easier on a surface with a higher surface energy.

This is a preview of subscription content, access via your institution.

TABLE I.
TABLE II.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE III.
FIG. 5

References

  1. 1

    T. Kokubo, F. Miyaji H.M. Kim: Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J. Am. Ceram. Soc. 79, 1127 1996

    CAS  Article  Google Scholar 

  2. 2

    A. Moroni, V.L. Caja, E.L. Egger, L. Trinchese E.Y.S. Chao: Histomorphometry of hydroxyapatite coated and uncoated porous titanium bone implants. Biomaterials 15, 926 1994

    CAS  Article  Google Scholar 

  3. 3

    C.E. Wen, W. Xu, W.Y. Hu P.D. Hodgson: Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomater. 3, 403 2007

    CAS  Article  Google Scholar 

  4. 4

    W. Xu, W.Y. Hu, M.H. Li, Q.Q. Ma, P.D. Hodgson C.E. Wen: Sol-gel derived HA/TiO2 double coatings on Ti scaffolds for orthopaedic applications. Trans. Nonferrous Met. Soc. China 16, s209 2006

    Article  Google Scholar 

  5. 5

    W. Xu, W.Y. Hu, M. Li C.E. Wen: Sol-gel derived hydroxyapatite/titania biocoatings on titanium substrate. Mater. Lett. 60, 1575 2006

    CAS  Article  Google Scholar 

  6. 6

    L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo J.Y. Koak: Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 25, 2867 2004

    CAS  Article  Google Scholar 

  7. 7

    M. Uchida, H.M. Kim, T. Kokubo, S. Fujibayashi T. Nakamura: Effect of water treatment on the apatite-forming ability of NaOH-treated titanium metal. J. Biomed. Mater. Res. 63, 522 2002

    CAS  Article  Google Scholar 

  8. 8

    H.M. Kim, T. Kokubo, S. Fujibayashi, S. Nishiguchi T. Nakamura: Bioactive macroporous titanium surface layer on titanium substrate. J. Biomed. Mater. Res. 52, 553 2000

    CAS  Article  Google Scholar 

  9. 9

    L. Jonasova, F.A. Muller, A. Helebrant, J. Strnad P. Greil: Hydroxyapatite formation on alkali-treated titanium with different content of Na+ in the surface. Biomaterials 23, 3095 2002

    CAS  Article  Google Scholar 

  10. 10

    S.J. Li, R. Yang, M. Niinomi, Y.L. Hao Y.Y. Cui: Formation and growth of calcium phosphate on the surface of oxidized Ti–29Nb–13Ta–4.6Zr alloy. Biomaterials 25, 2525 2004

    CAS  Article  Google Scholar 

  11. 11

    T. Kokubo, H.M. Kim M. Kawashita: Novel bioactive materials with different mechanical properties. Biomaterials 24, 2161 2003

    CAS  Article  Google Scholar 

  12. 12

    H. Takadama, H.M. Kim, T. Kokubo T. Nakamura: XPS study of the process of apatite formation on bioactive Ti–6Al–4V alloy in simulated body fluid. Sci. Tech. Adv. Mater. 2, 389 2001

    CAS  Article  Google Scholar 

  13. 13

    R. Rohanizadeh, M.A. Sadeq R.Z. Legeros: Preparation of different forms of titanium oxide on titanium surface: Effects on apatite deposition. J. Biomed. Mater. Res. A 71, 343 2004

    CAS  Article  Google Scholar 

  14. 14

    X.B. Chen, A. Nouri, P.D. Hodgson C.E. Wen: Surface modification of TiZr alloy for biomedical application. Adv. Mater. Res. 15–17, 89 2007

    Google Scholar 

  15. 15

    C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa M. Mabuchi: Novel titanium foam for bone tissue engineering. J. Mater. Res. 17, 2633 2002

    CAS  Article  Google Scholar 

  16. 16

    X.X. Wang, S. Hayakawa, K. Tsuru A. Osaka: A comparative study of in vitro apatite deposition on heat-, H2O2- and NaOH-treated titanium surfaces. J. Biomed. Mater. Res. 54, 172 2001

    CAS  Article  Google Scholar 

  17. 17

    M. Kosmulski: The significance of the difference in the point of zero charge between rutile and anatase. Adv. Colloid Interface Sci. 99, 255 2002

    CAS  Article  Google Scholar 

  18. 18

    H.M. Kim, T. Himeno, M. Kawashita, J.H. Lee, T. Kokubo T. Nakamura: Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid. J. Biomed. Mater. Res. A 67, 1305 2003

    Article  Google Scholar 

  19. 19

    M. Uchida, H.M. Kim, T. Kokubo, S. Fujibayashi T. Nakamura: Structural dependence of apatite formation on titania gels in a simulated body fluid. J. Biomed. Mater. Res. A 64, 164 2003

    Article  Google Scholar 

  20. 20

    X.X. Wang, S. Hayakawa, K. Tsuru A. Osaka: Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 23, 1353 2002

    CAS  Article  Google Scholar 

  21. 21

    J.M. Wu, J.F. Liu, S. Hayakawa, K. Tsuru A. Osaka: Low-temperature deposition of rutile film on biomaterials substrates and its ability to induce apatite deposition in vitro. J. Mater. Sci. Mater. Med. 18, 1529 2007

    CAS  Article  Google Scholar 

  22. 22

    T. Peltola, M. Patsi, H. Rahiala, I. Kangasniemi A. Yli-Urpo: Calcium phosphate induction by sol-gel-derived titania coatings on titanium substrates in vitro. J. Biomed. Mater. Res. 41, 504 1998

    CAS  Article  Google Scholar 

  23. 23

    D.V. Kilpadi J.E. Lemons: Surface energy characterization of unalloyed titanium implants. J. Biomed. Mater. Res. 28, 1419 1994

    CAS  Article  Google Scholar 

  24. 24

    D.V. Kilpadi, J.J. Weimer J.E. Lemons: Effect of passivation and dry heat-sterilization on surface energy and topography of unalloyed titanium implants. Colloids Surf. A 135, 89 1998

    CAS  Article  Google Scholar 

  25. 25

    D.V. Kilpadi, G.N. Raikar, J. Liu, J.E. Lemons, Y. Vohra J.C. Gregory: Effect of surface treatment on unalloyed titanium implants: Spectroscopic analyses. J. Biomed. Mater. Res. 40, 646 1998

    CAS  Article  Google Scholar 

  26. 26

    G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J.G. Gerstorfer, D.L. Cochran B.D. Boyan: High surface energy enhances cell response to titanium substrate microstructure. J. Biomed. Mater. Res. A 74, 49 2005

    CAS  Article  Google Scholar 

  27. 27

    G. Altankov, F. Grinnell T. Groth: Studies on the biocompatibility of materials: Fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. J. Biomed. Mater. Res. 30, 385 1996

    CAS  Article  Google Scholar 

  28. 28

    X. Lu, Z. Zhao Y. Leng: Biomimetic calcium phosphate coatings on nitric-acid-treated titanium surfaces. Mater. Sci. Eng., C 27, 700 2007

    CAS  Article  Google Scholar 

  29. 29

    A. Oyane, K. Onuma, A. Ito, H.M. Kim, T. Kokubo T. Nakamura: Formation and growth of clusters in conventional and new kinds of simulated body fluids. J. Biomed. Mater. Res. A 64, 339 2003

    Article  Google Scholar 

  30. 30

    Z. Zhong, S. Yin, C. Liu, Y. Zhong, W. Zhang, D. Shi C.A. Wang: Surface energy for electroluminescent polymers and indium–tin–oxide. Appl. Surf. Sci. 207, 183 2003

    CAS  Article  Google Scholar 

  31. 31

    M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Matsushita, T. Kokubo T. Nakamura: Osteoinductive porous titanium implants: Effect of sodium removal by dilute HCl treatment. Biomaterials 27, 2682 2006

    CAS  Article  Google Scholar 

  32. 32

    D.V. Bavykin, J.M. Friedrich F.C. Walsh: Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 18, 2807 2006

    CAS  Article  Google Scholar 

  33. 33

    R.N. Wenzel: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988 1936

    CAS  Article  Google Scholar 

  34. 34

    I.V. Markov: Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy World Science Singapore 1995 77

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support for this research through the ARC Discovery Project DP0770021 (Australian Research Council). P. Hodgson is also supported by the ARC through a Federation Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C.E. Wen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, X., Li, Y., Lin, J. et al. Apatite-inducing ability of titanium oxide layer on titanium surface: The effect of surface energy. Journal of Materials Research 23, 1682–1688 (2008). https://doi.org/10.1557/JMR.2008.0195

Download citation