Atomistic simulation of fracture in Ni3Al

Abstract

The molecular dynamics method has been used to simulate mode I cracking in Ni3Al. Close attention has been paid to the process of atomic configuration evolution of the cracks. The simulation results show that at low temperature, the Shockley partial dislocations are emitted before the initiation of the crack propagation, subsequently forming the pseudo-twins on (111) planes in crack-tip zone, and then the crack cleavage occurs. The emitting of the Shockley partial dislocations accompanies the crack cleavage during the simulation process. At the higher temperature, the blunting at the crack tip is caused by the [110] superdislocations emitted on (100) plane. The present work also shows that the dipole dislocations on (111) planes in the 1/2[110] dislocation core can be formed.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
TABLE I.
FIG. 3
TABLE II.
FIG. 4
TABLE III.
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1

    A. Kelly: Strong Solids Oxford University Press London, UK 1966 22

    Google Scholar 

  2. 2

    J.R. Rice G.E. Beltz: The activation energy for dislocation nucleation at a crack. J. Mech. Phys. Solids 42, 333 1994

    CAS  Article  Google Scholar 

  3. 3

    J.R. Rice: Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239 1992

    CAS  Article  Google Scholar 

  4. 4

    J.R. Rice R. Thomson: Ductile versus brittle behaviour of crystals. Philos. Mag. 29, 73 1974

    CAS  Article  Google Scholar 

  5. 5

    J.P. Hirth J. Lothe: Theory of Dislocations Wiley New York 1968 201

    Google Scholar 

  6. 6

    S.J. Zhou, A.E. Carlsson R. Thomson: Crack blunting effects on dislocation emission from cracks. Phys. Rev. Lett. 72, 852 1994

    CAS  Article  Google Scholar 

  7. 7

    Korner Exhaustion of a [10-1](111) slip to explain the strength anomaly in Ni3(Al,Ti). Philos. Mag. A 63(3), 407 1991

    CAS  Article  Google Scholar 

  8. 8

    C.T. Chou P.B. Hirsch: Computer simulation of motion screw dislocations in Ni3Al. Philos. Mag. A 68(6), 1097 1993

    CAS  Article  Google Scholar 

  9. 9

    B. Devincre, P. Veyssière, L.P. Kubin G. Saada: A simulation of dislocation dynamics and of the flow stress anomaly in L12 alloys. Philos. Mag. A 75, 1263 1997

    CAS  Article  Google Scholar 

  10. 10

    A.H.W. Ngan, M. Wen C.H. Woo: Atomistic simulations of Paidar–Pope–Vitek lock formation in Ni3Al. Comput. Mater. Sci. 29, 259 2004

    CAS  Article  Google Scholar 

  11. 11

    Y.S. Choi, D.M. Dimiduk, M.D. Uchic T.A. Parthasarathy: Modelling plasticity of Ni3Al-based L12 intermetallic single crystals. I. Anomalous temperature dependence of the flow behaviour. Philos. Mag. 87, 1939 2007

    CAS  Article  Google Scholar 

  12. 12

    N. Baluc R. Schaublin: Weak beam transmission electron imaging of superdislocation in ordered Ni3Al. Philos. Mag. A 74(1), 113 1996

    CAS  Article  Google Scholar 

  13. 13

    M. Dao, B.K. Kad R.J. Asaro: Mechanism of intense failure in Ni3Al single crystals. Philos. Mag. A 75(2), 443 1997

    CAS  Article  Google Scholar 

  14. 14

    Z.W. Shan, X. Wu, L. Liu, J.H. Yang Y.B. Xu: In situ transmission electron microscopy investigation of crack propagation in single crystal Ni3Al. Mater. Sci. Technol. 17, 1398 2001

    CAS  Article  Google Scholar 

  15. 15

    A.F. Voter S.P. Chen: High temperature ordered intermetallic alloys in Characterization of Defects in Materials, edited by R.W. Siegel, J.R. Weertman, and R. Sinclair (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), p. 175

  16. 16

    V. Shastry D. Farkas: Molecular statics simulation of fracture in α-iron. Mater. Sci. Eng. 4, 473 1996

    CAS  Google Scholar 

  17. 17

    J.E. Angelo M.I. Baskes: Interfacial studies using EAM and MEAM. Interface Sci. 4, 47 1997

    Article  Google Scholar 

  18. 18

    D. Farkas, D. Roqueta, A. Vilette K. Ternes: Atomistic simulations in ternary Ni–Ti–Al alloys. Modell. Simul. Mater. Sci. Eng. 4, 359 1996

    CAS  Article  Google Scholar 

  19. 19

    Y. Mishin, D. Farkas, M.J. Mehl D.A. Papaconstantopoulos: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393 1999

    CAS  Article  Google Scholar 

  20. 20

    F.J. Cherne, M.I. Baskes P.A. Deymier: Properties of liquid nickel: A critical comparison of EAM and MEAM calculations. Phys. Rev. B 65, 024209 2001

    Article  Google Scholar 

  21. 21

    J.E. Angelo, N.R. Moody M.I. Baskes: Trapping of hydrogen to lattice defects in nickel. Modell. Simul. Mater. Sci. Eng. 3, 289 1995

    CAS  Article  Google Scholar 

  22. 22

    T. Zhu C-Y. Wang: Misfit dislocation networks in the γ/γt phase interface of a Ni-based single-crystal superalloy: Molecular dynamics simulations. Phys. Rev. B 72, 014111 2005

    Article  Google Scholar 

  23. 23

    P. Veyssiere, M. Shimotomai P. Beauchamp: On the presence of superlattice intrinsic stacking faults in plastically deformed Ni3Al. Philos. Mag. A 51, 469 1985

    CAS  Article  Google Scholar 

  24. 24

    K. Hemker M.J. Mills: Measurements of antiphase boundary and complex stacking fault energies in binary and B-doped Ni3Al using TEM. Philos. Mag. A 68, 305 1993

    CAS  Article  Google Scholar 

  25. 25

    H.P. Karnthaler, E.T. Muhlbacher C. Rentenberger: The influence of the fault energies on the anomalous mechanical behaviour of Ni3Al alloys. Acta Mater. 44, 547 1996

    CAS  Article  Google Scholar 

  26. 26

    A. Paxton Y.G. Sun: The role of planar fault energy in the yield anomaly in L12 intermetallics. Philos. Mag. A 78, 85 1998

    CAS  Google Scholar 

  27. 27

    G. Schoeck, S. Kohlhammer M. Fahnle: Planar dissociations and recombination energy of [110] superdislocations in Ni3Al: Generalized Peierls model in combination with ab initio electron theory. Philos. Mag. Lett. 79, 849 1999

    CAS  Article  Google Scholar 

  28. 28

    S. Kohlhammer, M. Fahnle G. Schoeck: The structure of [010] dislocations in Ni3Al. Scripta Mater. 39, 359 1998

    CAS  Article  Google Scholar 

  29. 29

    Y. Mishin: Atomistic modeling of the γ and γ′-phases of the Ni–Al system. Acta Mater. 52, 1451 2004

    CAS  Article  Google Scholar 

  30. 30

    L. Hua, H. Rafii-Tabar M. Cross: Molecular dynamics simulation of fractures using an N-body potential. Philos. Mag. Lett. 75, 237 1997

    CAS  Article  Google Scholar 

  31. 31

    A. Machova G.J. Ackland: Dynamic overshoot in α-iron by atomistic simulations. Model. Simul. Mater. Sci. Eng. 6, 521 1998

    CAS  Article  Google Scholar 

  32. 32

    M.P. Allen D.J. Tildesley: Computer Simulation of Liquids Oxford University Press New York 1987 83

    Google Scholar 

Download references

Acknowledgments

This research was supported by National Basic Research Program of China (Grant No. 2006CB605102) and National Natural Science Foundation of China (Grant No. 90306016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hong-Xian Xie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xie, HX., Wang, CY. & Yu, T. Atomistic simulation of fracture in Ni3Al. Journal of Materials Research 23, 1597–1603 (2008). https://doi.org/10.1557/JMR.2008.0192

Download citation