Porous hydroxyapatite-based obturation materials for dentistry

Abstract

New porous biomaterials based on hydroxyapatite (HAp) were designed as obturation materials for dental cavities. Synthetic HAp powder with a particle diameter of 150 μm was agglutinated using three different polyurethane monocomponents (rigid, semi-rigid, and flexible), enabling the matching of their properties to those of real teeth. Alumina particles were also added in some cases. Our new hybrid materials contain up to 60% HAp. Interconnected pores range in size from 100 to 350 μm, while the pore volume fraction varies between 25% and 60%. Most of these materials possess the right morphology for implants and prostheses because their porous structures can be vascularized for bone and tooth ingrowth. Some samples also contain alumina particles to improve the abrasion resistance and to support the stresses produced during mastication. The materials were characterized by x-ray diffraction, scanning electron microscopy, and mechanical testing, along with abrasion, scratch, sliding wear, friction, and staining tests.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

TABLE I.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

References

  1. 1

    D. Stojanovic, B. Jokic, D.J. Veljovic, R. Petrovic, P.S. Uskokovic D.J. Janackovic: Bioactive glass-apatite composite coating for titanium implant synthesized by electrophoretic deposition. J. Eur. Ceram. Soc. 27, 1595 2007

    CAS  Article  Google Scholar 

  2. 2

    C. Balázsi, F. Wéber, Z. Kövér, E. Horváth C. Németh: Preparation of calcium-phosphate bioceramics from natural resources. J. Eur. Ceram. Soc. 27, 1601 2007

    Article  CAS  Google Scholar 

  3. 3

    J.M. Anderson J.J. Langone: Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J. Control. Release 57, 107 1999

    CAS  Article  Google Scholar 

  4. 4

    M. Tanahashi, T. Yao, T. Kokubo, M. Minoda, T. Miyamoto, T. Nakamura T. Yamamuro: Apatite coated on organic polymers by biomimetic process improvement in its adhesion to substrate by NaOH treatment. J. Appl. Biomater. 5, 339 1994

    CAS  Article  Google Scholar 

  5. 5

    P.N. de Aza, F. Guitián S. de Aza: A new bioactive material which transforms in situ into hydroxyapatite. Acta Mater. 46, 2541 1998

    Article  Google Scholar 

  6. 6

    Y. Shikinami M. Okuno: Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials 20, 859 1999

    CAS  Article  Google Scholar 

  7. 7

    M.E. Thomas, P.W. Richter, T. van Deventer, J. Crooks U. Ripamonti: Macroporous synthetic hydroxyapatite bioceramics for bone substitute applications. S. Afr. J. Sci. 95, 359 1999

    CAS  Google Scholar 

  8. 8

    R. Schilke, J.A. Lisson, O. Baub W. Geurtsen: Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch. Oral Biol. 45(5), 355 2000

    CAS  Article  Google Scholar 

  9. 9

    R.S. Manly, H.C. Hodge L.E. Ange: Density and refractive index studies of dental hard tissues: II. Density distribution curves. J. Dent. Res. 15, 203 1939

    Article  Google Scholar 

  10. 10

    S.A. Patterson: In vivo and in vitro studies of the effect of disodium salt of ethylenediamine tetra-acetate on human dentine and its endodontic implications. Oral Surg. 16(1), 83 1987

    Article  Google Scholar 

  11. 11

    D.H. Pashley: Dentin-predentin complex and its permeability: Physiology overview. J. Dent. Res. 64, 613 1985

    Article  Google Scholar 

  12. 12

    L.B. Goldman, M. Goldman, J.H. Kronman P.S. Lin: The efficacy of several irrigations solutions for endodontics: A scanning electron microscopy study. Oral Surg. 52(2), 197 1985

    Article  Google Scholar 

  13. 13

    A. Cosijns, C. Vervaet, J. Luyten, S. Mullens, F. Siepmann, L. Van Hoorebeke, B. Masschaele, V. Cnudde J.P. Remon: Porous hydroxyapatite tablets as carriers for low-dosed drugs. Eur. J. Pharmacol. Biopharmacol. 67(2), 498 2007

    CAS  Article  Google Scholar 

  14. 14

    D. Gupta, S. Chandra S. Chandra: Effect of the smeared layer upon dentinal tubule penetration by root canal sealers: A SEM study. Endodontology 8(1), 26 1996

    Google Scholar 

  15. 15

    S. Teng, L. Chen, Y. Guo J. Shi: Formation of nano-hydroxyapatite in gelatin droplets and the resulting porous composite microspheres. J. Inorg. Biochem. 101, 686 2007

    CAS  Article  Google Scholar 

  16. 16

    J.F. Piecuch: Long-term evaluation of the use of coralline hydroxyapatite in orthognathic surgery. J. Oral Maxillofac. Surg. 56, 941 1998

    Article  Google Scholar 

  17. 17

    N. Ozgür Engin A. Cüney Tas: Manufacture of macroporous calcium hydroxyapatite bioceramics. J. Eur. Ceram. Soc. 19, 2569 1999

    Article  Google Scholar 

  18. 18

    L.K.A. Rodriguez, M.N. dos Santos, D. Pereira, A.V. Assaf V. Pardi: Carbon dioxide laser in dental caries prevention. J. Dent. 32, 531 2004

    Article  Google Scholar 

  19. 19

    H.J. Lee, S.E. Kim, H.W. Choi, C.W. Kim, K.J. Kim S.C. Lee: The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly (E-caprolactone)/hydroxyapatite nanocomposites. Eur. Polym. J. 43, 1602 2007

    CAS  Article  Google Scholar 

  20. 20

    P.S. Uskokovic, C.Y. Tang, C.P. Tsui, N. Ignjatovic D.P. Uskokovic: Micromechanical properties of a hydroxyapatite/poly-L-lactide biocomposite using nanoindentation and modulus mapping. J. Eur. Ceram. Soc. 27, 1559 2007

    CAS  Article  Google Scholar 

  21. 21

    J.P. Paul: Strength requirements for internal and external prostheses. J. Biomech. 32, 381 1999

    CAS  Article  Google Scholar 

  22. 22

    M. Spector: Historical review of porous-coated implants. J. Arthroplasty 2, 163 1987

    CAS  Article  Google Scholar 

  23. 23

    P.H.F. Caria, E.Y. Kawachi, C.A. Bertran J.A. Camilli: Biological assessment of porous-implant hydroxyapatite combines with periosteal grafting in maxillary defects. J. Oral Maxillofac. Surg. 65, 847 2007

    Article  Google Scholar 

  24. 24

    M. Rabello: Putting Additives into Polymers Artliber Sao Paulo 2000 Chap. 10

    Google Scholar 

  25. 25

    L.H. He M.V. Swain: Enamel: A “metallic-like” deformable biocomposite. J. Dent. 35, 431 2007

    CAS  Article  Google Scholar 

  26. 26

    C-L. Lin, S-H. Chang, J-C. Wang W-J. Chang: Mechanical interactions of an implant/tooth-supported system under different periodontal supports and number of splinted teeth with rigid and non-rigid connections. J. Dent. 34, 682 2006

    Article  Google Scholar 

  27. 27

    B. Fischman: The rotational aspect of mandibular flexure. J. Prosth. Dent. 64, 483 1990

    CAS  Article  Google Scholar 

  28. 28

    A. de la Isla, W. Brostow, B. Bujard, M. Estevez, J.R. Rodriguez, S. Vargas V.M. Castaño: Nanohybrid scratch resistant coatings for teeth and bone viscoelasticity manifested in tribology. Mater. Res. Innovat. 7(2), 110 2003

    Article  Google Scholar 

  29. 29

    M. Estevez, S. Vargas, H.E. Hagg Lobland, A. de la Isla, W. Brostow J. Rogelio Rodrıguez: Characterization of novel dental obturation materials. Mater. Res. Innovat. 10(4), 411 2006

    Article  Google Scholar 

  30. 30

    V.M. Castaño R. Rodriguez: Polymer-based hybrid organic-inorganic materials in Performance of Plastics, edited by W. Brostow Hanser Munich 2000 Chap. 24

    Google Scholar 

  31. 31

    M. Deng S.W. Shalaby: Polymers as biomaterials in Performance of Plastics, edited by W. Brostow Hanser Munich 2000 Chap. 23

    Google Scholar 

  32. 32

    C. Hengtrakool, G.J. Pearson M. Wilson: Interaction between GIC and S Sanguis biofilms: Antibacterial properties and changes of surfaces hardness. J. Dent. 34, 588 2006

    CAS  Article  Google Scholar 

  33. 33

    T.J. Griffin W.S. Cheung: The use of short, wide implants in posterior areas with reduced bone height: A retrospective investigation. J. Prosth. Dent. 92, 139 2004

    Article  Google Scholar 

  34. 34

    J.W. Freudenthaler, G.K. Tischler C.J. Burstone: Bond strength of fiber-reinforced composite bars for orthodontic attachment. Am. J. Orthod. Dentofacial Orthop. 120, 648 2001

    CAS  Article  Google Scholar 

  35. 35

    F. Tancret, J-M. Bouler, J. Chamousset L-M. Minois: Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. J. Eur. Ceram. Soc. 26, 3647 2006

    CAS  Article  Google Scholar 

  36. 36

    C.E. Aragon R.N. Bohay: The application of alveolar distraction osteogenesis following nonresorbable hydroxyapatite grafting in the anterior maxilla: A clinical report. J. Prosth. Dent. 93, 518 2005

    Article  Google Scholar 

  37. 37

    R.P. Wool: Interfaces and adhesion in Performance of Plastics, edited by W. Brostow Hanser Munich 2000 Chap. 15

    Google Scholar 

  38. 38

    R. Mülhaupt: Toughened thermoplastics and thermosets in Performance of Plastics edited by W. Brostow Hanser Munich 2000 Chap. 20

    Google Scholar 

  39. 39

    Z. Roslaniec, G. Broza K. Schulte: Nanocomposites based on multiblock polyester elastomers (PEEs) and carbon nanotubes (CNTs). Compos. Interfaces 10, 95 2003

    CAS  Article  Google Scholar 

  40. 40

    A. Bismarck, M. Hofmeier G. Dörner: Effect of hot water immersion on the performance of carbon reinforced unidirectional poly(ether ether ketone) (PEEK) composites: Stress rupture under end-loaded bending. Composites A 38, 407 2007

    Article  CAS  Google Scholar 

  41. 41

    A. Kopczynska G.W. Ehrenstein: Polymeric surfaces and their true surface tension in solids and melts. J. Mater. Ed. 29, 325 2007

    CAS  Google Scholar 

  42. 42

    W. Brostow, J.V. Duffy, G.F. Lee K. Madejczyk: Parameters of equation of state of polyurethanes from acoustic resonance and isobaric expansivity. Macromolecules 24, 479 1991

    CAS  Article  Google Scholar 

  43. 43

    E.B. Mano: Polymers as Engineering Materials Edgard Blücher São Paulo 1996

    Google Scholar 

  44. 44

    L.G. Griffith: Polymeric biomaterials. Acta Mater. 48, 263 2000

    CAS  Article  Google Scholar 

  45. 45

    W. Brostow, B. Bujard, P.E. Cassidy, H.E. Hagg P.E. Montemartini: Effects of fluoropolymer addition to an epoxy on scratch depth and recovery. Mater. Res. lnnovat. 6, 7 2001

    Article  CAS  Google Scholar 

  46. 46

    W. Brostow, J-L. Deborde, M. Jaklewicz P. Olszynski: Tribology with emphasis on polymers: Friction, scratch resistance and wear. J. Mater. Ed. 25, 119 2003

    CAS  Google Scholar 

  47. 47

    W. Brostow M. Jaklewicz: Tribology of a polymeric molecular composite: Effects of magnetic field orientation. J. Mater. Res. 19, 1038 2004

    CAS  Article  Google Scholar 

  48. 48

    M. Estevez, S. Vargas, V.M. Castaño, J.R. Rodriguez, H.E. Lobland W. Hagg Brostow: Novel wear resistant and low toxicity dental obturation materials. Mater. Lett. 61, 3025 2007

    CAS  Article  Google Scholar 

  49. 49

    W. Brostow, W. Chonkaew, L. Rapoport, Y. Soifer A. Verdyan: Grooves in microscratch testing. J. Mater. Res. 22, 2483 2007

    CAS  Article  Google Scholar 

  50. 50

    W. Brostow, G. Damarla, J. Howe D. Pietkiewicz: Determination of wear of surfaces by scratch testing. E-Polymers 025, 1 2004

    Google Scholar 

  51. 51

    M.D. Bermudez, W. Brostow, F.J. Carrion-Vilches, J.J. Cervantes D. Pietkiewicz: Wear of thermoplastics determined by multiple scratching. E-Polymers 005, 1 2005

    Google Scholar 

  52. 52

    W. Brostow, H.E. Hagg Lobland M. Narkis: Sliding wear, viscoelasticicity, and brittleness of polymers. J. Mater. Res. 21, 2422 2006

    CAS  Article  Google Scholar 

  53. 53

    L. Vujosevic K. Obradovic-Durici: Porosity of hard dental tissues. Stomatol. Glasnik Serb. 36(2), 95 1989

    CAS  Google Scholar 

  54. 54

    W. Brostow, A.M. Cunha, J. Quintanilla R. Simões: Predicting cracking phenomena in molecular dynamics simulations of polymer liquid crystals. Macromol. Theory Simul. 11, 308 2002

    CAS  Article  Google Scholar 

  55. 55

    W. Brostow R. Simões: Tribological and mechanical behavior of polymers simulated by molecular dynamics. J. Mater. Ed. 27, 19 2005

    CAS  Google Scholar 

  56. 56

    E. Rivera-Muñoz, R. Velázquez, R. Rodríguez: Improvement in mechanical properties of hydroxyapatite objects with controlled porosity made by modified gelcasting process. Mater. Sci. Forum 426–432, 4489 2003 on line at http://www.scientific.net.

    Article  Google Scholar 

  57. 57

    L.F. Giraldo, W. Brostow, E. Devaux, B.L. Lopez L.D. Perez: Scratch and wear resistance of polyamide 6 reinforced with multiwall carbon nanotubes. J. Nanosci. Nanotechnol. 8 (2008, in press

  58. 58

    E.M. Rivera, M. Araiza, W. Brostow, V.M. Castaño, J.R. Diaz-Estrada, R. Hernández J.R. Rodríguez: Synthesis of hydroxyapatite from eggshells. Mater. Lett. 41, 128 1999

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are in debt to Mrs. Alicia del Real for her valuable help in SEM analysis and to Mrs. Maribel Presa for the determination of the mechanical properties. Financial support to H.E.H. Lobland has been provided by a National Defense Science and Engineering Graduate (NDSEG) Fellowship (Washington, DC).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Witold Brostow.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brostow, W., Estevez, M., Lobland, H.E.H. et al. Porous hydroxyapatite-based obturation materials for dentistry. Journal of Materials Research 23, 1587–1596 (2008). https://doi.org/10.1557/JMR.2008.0191

Download citation