Time-dependent mechanical characterization of poly(2-hydroxyethyl methacrylate) hydrogels using nanoindentation and unconfined compression

Abstract

Hydrogels pose unique challenges to nanoindentation including sample preparation, control of experimental parameters, and limitations imposed by mechanical testing instruments and data analysis originally intended for harder materials. The artifacts that occur during nanoindentation of hydrated samples have been described, but the material properties obtained from hydrated nanoindentation have not yet been related to the material properties obtained from macroscale testing. To evaluate the best method for correlating results from microscale and macroscale tests of soft materials, nanoindentation and unconfined compression stress-relaxation tests were performed on poly-2-hydroxyethyl methacrylate (pHEMA) hydrogels with a range of cross-linker concentrations. The nanoindentation data were analyzed with the Oliver–Pharr elastic model and the Maxwell–Wiechert (j = 2) viscoelastic model. The unconfined compression data were analyzed with the Maxwell–Wiechert model. This viscoelastic model provided an excellent fit for the stress-relaxation curves from both tests. The time constants from nanoindentation and unconfined compression were significantly different, and we propose that these differences are due to differences in equilibration time between the microscale and macroscale experiments and in sample geometry. The Maxwell–Wiechert equilibrium modulus provided the best agreement between nanoindentation and unconfined compression. Also, both nanoindentation analyses showed an increase in modulus with each increasing cross-linker concentration, validating that nanoindentation can discriminate between similar, low-modulus, hydrated samples.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
TABLE I
FIG. 8
TABLE II

References

  1. 1

    A.J. Engler, M.A. Griffin, S. Sen, C.G. Bonnemann, H.L. Sweeney D.E. Discher: Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff environments. J. Cell Bio. 166, 877 2004

    CAS  Article  Google Scholar 

  2. 2

    A.J. Engler, S. Sen, H.L. Sweeney D.E. Discher: Matrix elasticity directs stem cell lineage specification. Cell 126, 677 2006

    CAS  Article  Google Scholar 

  3. 3

    J.Y. Wong, A. Velasco, P. Rajagopalan Q. Pham: Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19, 1908 2003

    CAS  Article  Google Scholar 

  4. 4

    F. Haque: Application of nanoindentation to development of biomedical materials. Surf. Eng. 19, 255 2003

    Article  Google Scholar 

  5. 5

    M.R. VanLandingham, J.S. Villarrubia, W.F. Guthrie G.F. Meyers: Nanoindentation of polymers: An overview. Macromol. Symp. 167, 15 2001

    CAS  Article  Google Scholar 

  6. 6

    M.L. Oyen: Spherical indentation creep following ramp loading. J. Mater. Res. 20, 2094 2005

    CAS  Article  Google Scholar 

  7. 7

    L. Cheng, X. Xia, W. Yu, L.E. Scriven W.W. Gerberich: Flat-punch indentation of viscoelastic material. J. Polym. Sci. Pol. Phys. 38, 10 2000

    CAS  Article  Google Scholar 

  8. 8

    L. Cheng, X. Xia, L.E. Scriven W.W. Gerberich: Spherical-tip indentation of viscoelastic material. Mech. Mater. 37, 213 2005

    Article  Google Scholar 

  9. 9

    N. Fujisawa M.V. Swain: Effect of unloading strain rate on the elastic modulus of a viscoelastic solid determined by nanoindentation. J. Mater. Res. 21, 708 2006

    CAS  Article  Google Scholar 

  10. 10

    S. Gupta, F. Carrillo, C. Li, L. Pruitt C. Puttlitz: Adhesive forces significantly affect elastic modulus determination of soft polymeric materials in nanoindentation. Mater. Lett. 61, 448 2007

    CAS  Article  Google Scholar 

  11. 11

    F. Carrillo, S. Gupta, M. Balooch, S.J. Marshall, G.W. Marshall, L. Pruitt C.M. Puttlitz: Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus. J. Mater. Res. 20, 2820 2005

    CAS  Article  Google Scholar 

  12. 12

    F. Carrillo, S. Gupta, M. Balooch, S.J. Marshall, G.W. Marshall, L. Pruitt C.M. Puttlitz: Erratum: Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus. J. Mater. Res. 21, 535 2006

    CAS  Article  Google Scholar 

  13. 13

    A.C. Fischer-Cripps: Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat Technol. 200, 4153 2006

    CAS  Article  Google Scholar 

  14. 14

    Y. Cao, D. Yang W. Soboyejoy: Nanoindentation method for determining the initial contact and adhesion characteristics of soft polydimethylsiloxane. J. Mater. Res. 20, 2004 2005

    CAS  Article  Google Scholar 

  15. 15

    C. Klapperich, K. Komvopoulos L. Pruitt: Nanomechanical properties of polymers determined from nanoindentation experiments. J. Tribol. 123, 624 2001

    CAS  Article  Google Scholar 

  16. 16

    S.A. Hayes, A.A. Goruppa F.R. Jones: Dynamic nanoindentation as a tool for examination of polymeric materials. J. Mater. Res. 19, 3298 2004

    CAS  Article  Google Scholar 

  17. 17

    Y-T. Cheng, T. Page, G.M. Pharr, M.V. Swain K.J. Wahl: Fundamentals and applications of instrumented indentation in multidisciplinary research. J. Mater. Res. 19, 1 2004

    CAS  Article  Google Scholar 

  18. 18

    A.K. Bembey, M.L. Oyen, A.J. Bushby A. Boyde: Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos. Mag. 86, 5691 2006

    CAS  Article  Google Scholar 

  19. 19

    J. Thomas, K. Gomes, A. Lowman M. Marcolongo: The effect of dehydration history on PVA/PVP hydrogels for nucleus pulposus replacement. J. Biomed. Mater. Res. B 69, 135 2004

    Article  Google Scholar 

  20. 20

    C.C. White, M.R. Vanlandingham, P.L. Drzal, N.K. Chang S.H. Chang: Viscoelastic characterization of polymers using instrumented indentation. II. Dynamic testing. J. Polym. Sci. Polym. Phys. 43, 1812 2005

    CAS  Article  Google Scholar 

  21. 21

    G.M. Odegard, T.S. Gates H.M. Herring: Characterization of viscoelastic properties of polymeric materials through nanoindentation. Exp. Mech. 45, 130 2005

    Article  Google Scholar 

  22. 22

    N. Bouaita, S.J. Bull, J. Fernandez Palacio J.R. White: Dynamic nanoindentation of some polyolefins. Polym. Eng. Sci. 46, 1160 2006

    CAS  Article  Google Scholar 

  23. 23

    G. Huang H. Lu: Measurements of two independent viscoelastic functions by nanoindentation. Exp. Mech. 47, 87 2007

    Article  Google Scholar 

  24. 24

    D.M. Ebenstein L. Pruitt: Nanoindentation of soft hydrated materials for application to vascular tissues. J. Biomed. Mater. Res. 69A, 222 2004

    CAS  Article  Google Scholar 

  25. 25

    D. Roylance: Mechanics of Materials John Wiley New York 1996

    Google Scholar 

  26. 26

    W.C. Oliver G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992

    CAS  Article  Google Scholar 

  27. 27

    P.S. Khalsa S.R. Eisenberg: Compressive behavior of articular cartilage is not completely explained by proteoglycan osmotic pressure. J. Biomech. 30, 589 1997

    CAS  Article  Google Scholar 

  28. 28

    S. Gupta, F. Carrillo, M. Balooch, L. Pruitt C. Puttlitz: Simulated soft tissue nanoindentation: A finite element study. J. Mater. Res. 20, 1979 2005

    CAS  Article  Google Scholar 

  29. 29

    B. Tang A.H.W. Ngan: Accurate measurement of tip—sample contact size during nanoindentation of viscoelastic materials. J. Mater. Res. 18, 1141 2003

    CAS  Article  Google Scholar 

  30. 30

    S. Sasaki: Stress relaxation of deformed gel in a good solvent. J. Chem. Phys. 120, 5789 2004

    CAS  Article  Google Scholar 

  31. 31

    A.F. Mak, W.M. Lai V.C. Mow: Biphasic indentation of articular cartilage—I. Theoretical analysis. J. Biomech. 20, 703 1987

    CAS  Article  Google Scholar 

  32. 32

    N.K. Simha, H. Jin, M.L. Hall, S. Chiravarambath, J.L. Lewis: Effect of indenter size on elastic modulus of cartilage measured by indentation. J. Biomech. Eng. 129, 767 2007

    Article  Google Scholar 

  33. 33

    D.M. Ebenstein K.J. Wahl: A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves. J. Colloid Interface Sci. 298, 652 2006

    CAS  Article  Google Scholar 

  34. 34

    K.J. Wahl, S.A.S. Asif, J.A. Greenwood K.L. Johnson: Oscillating adhesive contacts between micron-scale tips and compliant polymers. J. Colloid Interface Sci. 296, 178 2006

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jessica D. Kaufman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaufman, J.D., Miller, G.J., Morgan, E.F. et al. Time-dependent mechanical characterization of poly(2-hydroxyethyl methacrylate) hydrogels using nanoindentation and unconfined compression. Journal of Materials Research 23, 1472–1481 (2008). https://doi.org/10.1557/JMR.2008.0185

Download citation