Growth of nanoscale BaTiO3/SrTiO3 superlattices by molecular-beam epitaxy


Commensurate BaTiO3/SrTiO3 superlattices were grown by reactive molecular-beam epitaxy on four different substrates: TiO2-terminated (001) SrTiO3, (101) DyScO3, (101) GdScO3, and (101) SmScO3. With the aid of reflection high-energy electron diffraction (RHEED), precise single-monolayer doses of BaO, SrO, and TiO2 were deposited sequentially to create commensurate BaTiO3/SrTiO3 superlattices with a variety of periodicities. X-ray diffraction (XRD) measurements exhibit clear superlattice peaks at the expected positions. The rocking curve full width half-maximum of the superlattices was as narrow as 7 arc s (0.002°). High-resolution transmission electron microscopy reveals nearly atomically abrupt interfaces. Temperature-dependent ultraviolet Raman and XRD were used to reveal the paraelectric-to-ferroelectric transition temperature (TC). Our results demonstrate the importance of finite size and strain effects on the TC of BaTiO3/SrTiO3 superlattices. In addition to probing finite size and strain effects, these heterostructures may be relevant for novel phonon devices, including mirrors, filters, and cavities for coherent phonon generation and control.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17
FIG. 18
FIG. 19
FIG. 20


  1. 1

    J.B. Neaton K.M. Rabe: Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Appl. Phys. Lett. 82, 1586 2003

    CAS  Article  Google Scholar 

  2. 2

    K. Johnston, X. Huang, J.B. Neaton K.M. Rabe: First-principles study of symmetry lowering and polarization in BaTiO3/SrTiO3 superlattices with in-plane expansion. Phys. Rev. B 71, 100103 2005

    Article  Google Scholar 

  3. 3

    D.A. Tenne, A. Bruchhausen, N.D. Lanzillotti-Kimura, A. Fainstein, R.S. Katiyar, A. Cantarero, A. Soukiassian, V. Vaithyanathan, J.H. Haeni, W. Tian, D.G. Schlom, K.J. Choi, D.M. Kim, C.B. Eom, H.P. Sun, X.Q. Pan, Y.L. Li, L.Q. Chen, Q.X. Jia, S.M. Nakhmanson, K.M. Rabe X.X. Xi: Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science 313, 1614 2006

    CAS  Article  Google Scholar 

  4. 4

    A. Soukiassian, W. Tian, D.A. Tenne, X.X. Xi, D.G. Schlom, N.D. Lanzillotti-Kimura, A. Bruchhausen, A. Fainstein, H.P. Sun, X.P. Pan, A. Cros A. Cantarero: Acoustic Bragg mirrors and cavities made using piezoelectric oxides. Appl. Phys. Lett. 90, 042909 2007

    Article  Google Scholar 

  5. 5

    H.P. Sun, W. Tian, X.Q. Pan, J.H. Haeni D.G. Schlom: Evolution of dislocation arrays in epitaxial BaTiO3 thin films grown on (100) SrTiO3. Appl. Phys. Lett. 84, 3298 2004

    CAS  Article  Google Scholar 

  6. 6

    D. Taylor: Thermal-expansion data VIII complex oxides, ABO3, the perovskites. Trans. J. Br. Ceram. Soc. 84, 181 1985

    CAS  Google Scholar 

  7. 7

    R. Ueckera, H. Wilke, D.G. Schlom, B. Velickov, P. Reiche, A. Polity, M. Bernhagen M. Rossberg: Spiral formation during Czochralski growth of rare-earth scandates. J. Cryst. Growth 295, 84 2006

    Article  Google Scholar 

  8. 8

    B. Velickov, V. Kahlenberg, R. Bertram M. Bernhagen: Crystal chemistry of GdScO3, DyScO3, SmScO3, and NdScO3. Z. Kristallogr. 222, 466 2007

    CAS  Article  Google Scholar 

  9. 9

    C.D. Theis D.G. Schlom: Cheap and stable titanium source for use in oxide molecular beam epitaxy systems. J. Vac. Sci. Technol., A 14, 2677 1996

    CAS  Article  Google Scholar 

  10. 10

    K. Iijima, T. Terashima, Y. Bando, K. Kamigaki H. Terauchi: Atomic layer growth of oxide thin films with perovskite-type structure by reactive evaporation. J. Appl. Phys. 72, 2840 1992

    CAS  Article  Google Scholar 

  11. 11

    T. Tsurumi, T. Suzuki, M. Yamane M. Daimon: Fabrication of barium titanate/strontium titanate artificial superlattice by atomic layer epitaxy. Jpn. J. Appl. Phys., Pt. 1 33, 5192 1994

    CAS  Article  Google Scholar 

  12. 12

    J.H. Haeni: Nanoengineering of Ruddlesden-Popper phases using molecular beam epitaxy. Ph.D. Thesis, The Pennsylvania State University, 2002 pp. 60–86

    Google Scholar 

  13. 13

    G. Koster, B.L. Kropman, G.J.H.M. Rijnders D.H.A. Blank: Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920 1998

    CAS  Article  Google Scholar 

  14. 14

    T. Kubo H. Nozoye: Surface structure of SrTiO3 (100). Surf. Sci. 542, 177 2003

    CAS  Article  Google Scholar 

  15. 15

    M.R. Castell: Scanning tunneling microscopy of reconstructions on the SrTiO3 (001) surface. Surf. Sci. 505, 1 2002

    CAS  Article  Google Scholar 

  16. 16

    J.H. Haeni, C.D. Theis D.G. Schlom: RHEED intensity oscillations for the stoichiometric growth of SrTiO3 thin films by reactive molecular beam epitaxy. J. Electroceram. 4, 385 2000

    CAS  Article  Google Scholar 

  17. 17

    Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by K-H. Hellwege and A.M. Hellwege, New Series, Group III, Vol. 16a, Springer New York 1981 59

  18. 18

    P. Bodin, S. Sakai Y. Kasai: Molecular-beam epitaxy fabrication of SrTiO3 and Bi2Sr2CaCu2O8 heterostructures using a novel reflection high-energy electron-diffraction monitoring technique. Jpn. J. Appl. Phys., Pt. 2 31, 949 1992

    Article  Google Scholar 

  19. 19

    D.H.A. Blank: private communication

  20. 20

    K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L-Q. Chen, D.G. Schlom C.B. Eom: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005 2004

    CAS  Article  Google Scholar 

  21. 21

    E.D. Specht, H-M. Christen, D.P. Norton L.A. Boatner: X-ray diffraction measurement of the effect of layer thickness on the ferroelectric transition in epitaxial KTaO3/KNbO3 multilayers. Phys. Rev. Lett. 80, 4317 1998

    CAS  Article  Google Scholar 

  22. 22

    H-M. Christen, E.D. Specht, D.P. Norton, M.F. Chisholm L.A. Boatner: Long-range ferroelectric interactions in KTaO3/KNbO3 superlattice structures. Appl. Phys. Lett. 72, 2535 1998

    CAS  Article  Google Scholar 

  23. 23

    S.K. Streiffer, J.A. Eastman, D.D. Fong, C. Thompson, A. Munkholm, M.V.R. Murty, O. Auciello, G.R. Bai G.B. Stephenson: Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films. Phys. Rev. Lett. 89, 067601 2002

    CAS  Article  Google Scholar 

  24. 24

    M. Sepliarsky, S.R. Phillpot, M.G. Stachiotti R.L. Migoni: Ferroelectric phase transitions and dynamical behavior in KNbO3/KTaO3 superlattices by molecular-dynamics simulation. J. Appl. Phys. 91, 3165 2002

    CAS  Article  Google Scholar 

  25. 25

    D.G. Schlom, L.Q. Chen, C.B. Eom, K.M. Rabe, S.K. Streiffer J.M. Triscone: Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589 2007

    CAS  Article  Google Scholar 

  26. 26

    J.B. Nelson D.P. Riley: An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. London, 57 160 1945

    CAS  Article  Google Scholar 

  27. 27

    C. Brooks, W. Tian D.G. Schlom: unpublished

  28. 28

    J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy D.G. Schlom: Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758 2004

    CAS  Article  Google Scholar 

  29. 29

    M.D. Biegalski, Y. Jia, D.G. Schlom, S. Trolier-McKinstry, S.K. Streiffer, V. Sherman, R. Uecker P. Reiche: Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates. Appl. Phys. Lett. 88, 192907 2006

    Article  Google Scholar 

  30. 30

    A. Vasudevarao, A. Kumar, L. Tian, J.H. Haeni, Y.L. Li, C-J. Eklund, Q.X. Jia, R. Uecker, P. Reiche, K.M. Rabe, L.Q. Chen, D.G. Schlom V. Gopalan: Multiferroic domain dynamics in strained strontium titanate. Phys. Rev. Lett. 97, 257602 2006

    CAS  Article  Google Scholar 

  31. 31

    H.J. Scheel, J.G. Bednorz P. Dill: Crystal growth of strontium titanate SrTiO3. Ferroelectrics 13, 507 1976

    CAS  Article  Google Scholar 

  32. 32

    S.B. Qadri, J.S. Horwitz, D.B. Chrisey, R.C.Y. Auyeung K.S. Grabowski: X-ray characterization of extremely high-quality (Sr,Ba)TiO3 films grown by pulsed laser deposition. Appl. Phys. Lett. 66, 1605 1995

    CAS  Article  Google Scholar 

  33. 33

    P.I. Nabokin, D. Souptel A.M. Balbashov: Floating zone growth of high-quality SrTiO3 single crystals. J. Cryst. Growth 250, 397 2003

    CAS  Article  Google Scholar 

  34. 34

    J.W. Mathews: Epitaxial Growth edited by J.W. Mathews Vol. 2, Academic Press New York 1975

  35. 35

    D.G. Schlom J.H. Haeni: A thermodynamic approach to selecting alternative gate dielectrics. MRS Bull. 27, 198 2002

    CAS  Article  Google Scholar 

  36. 36

    S.G. Lim, S. Kriventsov, T.N. Jackson, J.H. Haeni, D.G. Schlom, A.M. Balbashov, R. Uecker, P. Reiche, J.L. Freeouf G. Lucovsky: Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry. J. Appl. Phys. 91, 4500 2002

    CAS  Article  Google Scholar 

  37. 37

    M. Cardona: Optical properties and band structure of SrTiO3 and BaTiO3. Phys. Rev. 140, 651 1965

    CAS  Article  Google Scholar 

  38. 38

    Y.L. Li, S.Y. Hu, D. Tenne, A. Soukiassian, X.X. Xi, D.G. Schlom, K.J. Choi, C.B. Eom, A. Saxena, T. Lookman, Q.X. Jia L.Q. Chen: Prediction of ferroelectricity in BaTiO3/SrTiO3 superlattices with domains. Appl. Phys. Lett. 91, 112914 2007

    Article  Google Scholar 

  39. 39

    Y.L. Li, S.Y. Hu, D. Tenne, A. Soukiassian, D.G. Schlom, L.Q. Chen, X.X. Xi, K.J. Choi, C.B. Eom, A. Saxena, T. Lookman, Q.X. Jia: Interfacial coherency and ferroelectricity of BaTiO3/SrTiO3 superlattice films. Appl. Phys. Lett. 91, 252904 2007

    Article  Google Scholar 

  40. 40

    D. Tenne, J.D. Schmidt, P. Turner, A. Soukiassian, X.X. Xi, D.G. Schlom, Y.L. Li, Q.X. Jia, L.Q. Chen, M. Bernhagen, P. Reiche R. Uecker: unpublished

Download references


We gratefully acknowledge D.H.A. Blank for informing us of his termination method for (101) DyScO3 substrates. This work was supported by the Office of Naval Research under Grants N00014-03-1-0721 (D.G. Schlom), N00014-04-1-0426 (D.G. Schlom), and N00014-05-1-0559 (C.B. Eom) monitored by Dr. Colin Wood; by the National Science Foundation (NSF) under Grants DMR-0507146 (D.G. Schlom, L.Q. Chen, X.Q. Pan, C.B. Eom, and X.X. Xi), DMR-0705127 (D.A. Tenne), DMR-0122638 (L.Q. Chen), DMR-0213623 (L.Q. Chen), DMR-0313764 (C.B. Eom), ECS-0210449 (C.B. Eom), and DMR-0315633 (X.Q. Pan); by the United States Department of Energy (DOE) under Grant DE-FG02-01ER45907 (X.X. Xi); Research corporation under Grant No. 7134 (D.A. Tenne); by a Guggenheim fellowship (L.Q. Chen); and by NASA under Grant NASA3-NCC1034 (R.S.K).

Author information



Corresponding author

Correspondence to A. Soukiassian.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Soukiassian, A., Tian, W., Vaithyanathan, V. et al. Growth of nanoscale BaTiO3/SrTiO3 superlattices by molecular-beam epitaxy. Journal of Materials Research 23, 1417–1432 (2008).

Download citation