Microstructure and strengthening mechanism of die-cast Mg–Gd based alloys

Abstract

Mg–8Gd–2Y–Nd–0.3Zn (wt%) alloy was prepared by the high pressure die-cast technique. The microstructure, mechanical properties in the temperature range from room temperature to 573 K, and strengthening mechanism were investigated. It was confirmed that the Mg–Gd-based alloy with high Gd content exhibited outstanding die-cast character. The die-cast alloy was mainly composed of small cellular equiaxed dendrites and the matrix. The long lamellar-shaped stacking compound of Mg3X (X: Gd, Y, Nd, and Zn) and polygon-shaped precipitate of Mg5RE (RE: Gd, Y, and Nd) were mainly concentrated along the dendrite boundaries. Meanwhile, it was demonstrated that the Zn addition affects the formation of non-equilibrium precipitate Mg3X. The ultimate tensile strength, yield strength, and Young’s modulus were 302 MPa, 267 MPa, and 38 GPa at room temperature, respectively. The outstanding mechanical properties were mainly attributed to the small dendrite spacing, wide skin region, and some dispersed precipitates in the alloy formed by the high-pressure die-cast technique. Designing a novel die-cast Mg alloy with good heat resistance without Al element is a significant accomplishment.

This is a preview of subscription content, access via your institution.

TABLE I
FIG. 1
FIG. 2
TABLE II
FIG. 3
FIG. 4
FIG. 5
TABLE III

References

  1. 1

    C.J. Bettles M.A. Gibson: Microstructure design for enhanced elevated temperature properties in sand-castable magnesium alloys. Adv. Eng. Mater. 5, 859 2003

    Article  Google Scholar 

  2. 2

    S.G. Lee, G.R. Patel, A.M. Gokhale, A. Sreeranganathan M.F. Horstemeyer: Variability in the tensile ductility of high-pressure die-cast AM50 Mg-alloy. Scripta Mater. 53, 851 2005

    CAS  Article  Google Scholar 

  3. 3

    Y. Wang, G. Liu Z. Fan: Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment. Acta Mater. 54, 689 2006

    CAS  Article  Google Scholar 

  4. 4

    I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison T.M. Pollock: Microstructural characterization of a die-cast magnesium-rare earth alloy. Scripta Mater. 45, 1423 2001

    CAS  Article  Google Scholar 

  5. 5

    P. Bakke H. Westengen: Die casting for high performance-focus on alloy development. Adv. Eng. Mater. 5, 879 2003

    CAS  Article  Google Scholar 

  6. 6

    I.A. Anyanwu, S. Kamado Y. Kojima: Creep properties of Mg–Gd–Y–Zr alloys. Mater. Trans. 42, 1212 2001

    CAS  Article  Google Scholar 

  7. 7

    P.J. Apps, H. Karimzadeh, J.F. King G.W. Lorimer: Precipitation reactions in magnesium-rare earth alloys containing yttrium, gadolinium, or dysprosium. Scripta Mater. 48, 1023 2003

    CAS  Article  Google Scholar 

  8. 8

    Q.M. Peng, J.L. Wang, Y.M. Wu L.M. Wang: Microstructures and tensile properties of Mg–8Gd–0.6Zr–xNd–yY (x + y = 3, mass%) alloys. Mater. Sci. Eng., A 433, 133 2006

    Article  Google Scholar 

  9. 9

    I. Stulíková, B. Smola, F. von Buch B.L. Mordike: Development of creep resistant Mg–Gd–Sc alloys with low Sc content. Mat.-wiss. Werkstofftech. 20–24, 32 2001

    Google Scholar 

  10. 10

    K. Yamada, Y. Okubo, M. Shiono, H. Watanabe, S. Kamado Y. Kojima: Alloy development of high toughness Mg–Gd–Y–Zn–Zr alloys. Mater. Trans. 47, 1066 2006

    CAS  Article  Google Scholar 

  11. 11

    E. Abe, Y. Kawamura, Y. Hayashi A. Inoue: Long-period ordered structure in a high-strength nanocrystalline Mg–1 at.% Zn–2 at.% Y alloy studied by atomic-resolution Z-contrast STEM. Acta Mater. 50, 3845 2002

    CAS  Article  Google Scholar 

  12. 12

    W. Yamasaki, T. Anan, S. Yashimoto Y. Kawamura: Mechanical properties of warm-extruded Mg–Zn–Gd alloy with coherent 14H long periodic stacking ordered structure precipitate. Scripta Mater. 53, 799 2005

    CAS  Article  Google Scholar 

  13. 13

    J.P. Weiler, J.T. Wood, R.J. Klassen, R. Berkmortel G. Wang: Variability of skin thickness in an AM60B magnesium alloy die-casting. Mater. Sci. Eng., A 419, 297 2006

    Article  Google Scholar 

  14. 14

    H.I. Laukli, C.M. Gourlay, A.K. Dahle O. Lohne: Effects of Si content on defect band formation in hypoeutectic Al–Si die castings. Mater. Sci. Eng., A 413–414, 92 2005

    Article  Google Scholar 

  15. 15

    A.K. Dahle, S. Sanne, D.H.S.T. John H. Westengen: Formation of defect bands in high pressure die cast magnesium. J. Light Metal. 1, 99 2001

    Article  Google Scholar 

  16. 16

    P.D. Mccormark L. Crane: Physical Fluid Dynamics Academic Press New York 1973

    Google Scholar 

  17. 17

    T.E. Quested, A.T. Dinsdale A.L. Greer: Thermodynamic modelling of growth-restriction effects in aluminium alloys. Acta Mater. 53, 1323 2005

    CAS  Article  Google Scholar 

  18. 18

    D. William J. Callister Fundamentals of Materials Science and Engineering John Wiley & Sons 2001

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Academy of Sciences (CAS) for Distinguished Talents Program, The Science Program of the Promotes Northeast of CAS (KGCX2-SW-216), and the Science and Technology Program of Changchun (05GG54).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Limin Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peng, Q., Wang, L., Wu, Y. et al. Microstructure and strengthening mechanism of die-cast Mg–Gd based alloys. Journal of Materials Research 23, 1269–1275 (2008). https://doi.org/10.1557/JMR.2008.0169

Download citation