A comparison of microtensile and microcompression methods for studying plastic properties of nanocrystalline electrodeposited nickel at different length scales


A comparison of microcompression and microtensile methods to study mechanical properties of electrodeposited nanocrystalline (nc) nickel has been performed. Microtensile tests that probe a volume of more than 2 × 106 μm3 show reasonable agreement with results from microcompression tests that probe much smaller volumes down to a few μm3. Differences between the two uniaxial techniques are discussed in terms of measurements errors, probed volume and surface effects, strain rate, and influence of stress state. Uniaxial solicitation in compression mode revealed several advantages for studying stress–strain properties.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4


  1. 1

    Y. Yang, B.I. Imasogie, S.M. Allameh, B. Boyce, K. Lian, J. Lou W.O. Soboyejo: Mechanisms of fatigue in LIGA Ni MEMS thin films. Mater. Sci. Eng., A 444, 39 2007

    Article  Google Scholar 

  2. 2

    B. Li Q. Chen: Solid micromechanical valves fabricated with in situ UV-LIGA assembled nickel. Sens. Actuators, A 126, 187 2006

    CAS  Article  Google Scholar 

  3. 3

    N.R. Moody, J.M. Jungk, M.S. Kennedy, S.V. Prasad, D.F. Bahr W.W. Gerberich: Mechanical properties of wear tested LIGA nickel in Fundamentals of Nanoindentation and Nanotribology III, edited by K.J. Wahl, N. Huber, A.B. Mann, D.F. Bahr, and Y-T. Cheng (Mater. Res. Soc. Symp. Proc. 841 Warrendale, PA, 2005), R7.8

  4. 4

    K.S. Kumar, H. Van Swygenhoven S. Suresh: Mechanical behaviour of nanocrystalline metals and alloys. Acta Mater. 51, 5743 2003

    CAS  Article  Google Scholar 

  5. 5

    W.D. Nix, J.R. Greer, G. Feng E.T. Lilleodden: Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films 515, 3152 2007

    CAS  Article  Google Scholar 

  6. 6

    E. Mazza, S. Abel J. Dual: Experimental determination of mechanical properties of Ni and Ni–Fe microbars. Microsyst. Technol. 2, 197 1996

    Article  Google Scholar 

  7. 7

    M.A. Haque M.T.A. Saif: In-situ tensile testing of nanoscale specimens in SEM and TEM. Exp. Mech. 42(1), 123128 2001

    Google Scholar 

  8. 8

    B. Moser, R. Schwaiger M. Dao: Size effects on deformation and fracture on nanostructured materials in Nanostructured Coating, edited by A. Cavaleiro and J.Th.M. De Hosson, Nanostructure Science and Technology Series Springer, New York} 2

    Google Scholar 

  9. 9

    J.R. Greer, W.C. Oliver W.D. Nix: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 2005

    CAS  Article  Google Scholar 

  10. 10

    M.D. Uchic, D.M. Dimiduk, J.N. Florando W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305, 986 2004

    CAS  Article  Google Scholar 

  11. 11

    H.D. Espinosa, M. Panico, S. Berbenni K.W. Schwartz: Discrete dislocation dynamics simulations to interpret plasticity size and surface effects in freestanding fcc thin films. Int. J. Plast. 22, 2091 2006

    CAS  Article  Google Scholar 

  12. 12

    W.D. Nix H. Gao: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 1998

    CAS  Article  Google Scholar 

  13. 13

    I.N. Sneddon: The relation between load and penetration in the axisymmetric Boussineq for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 1965

    Article  Google Scholar 

  14. 14

    H. Bei, S. Shim, M.K. Miller, G.R. Pharr E.P. George: Effects of focused-ion-beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. APL 91, 111915 2007

    Google Scholar 

  15. 15

    B. Moser, K. Wasmer, L. Barbieri J. Michler: Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test. J. Mater. Res. 22(4), 1004 2007

    CAS  Article  Google Scholar 

  16. 16

    H. Zhang, B.E. Schuster, Q. Wie K.T. Ramesh: The design of accurate micro-compression experiments. Scripta Mater. 54, 181 2006

    CAS  Article  Google Scholar 

  17. 17

    W.F. Mohamad, A. Abou Ajar A.N. Saleh: Effects of oxide layers and metals on photoelectric and optical properties of Schottky barrier photodetector. Renew. Ener. 31, 1493 2006

    CAS  Article  Google Scholar 

  18. 18

    R.J. Asaro S. Suresh: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369 2005

    CAS  Article  Google Scholar 

  19. 19

    V.L. Tellkamp, A. Melmed E.J. Lavernia: Grain growth behavior of a nanostructured 5083 Al–Mg alloy. Metal. Mater. Trans. A 32, 2335 2001

    Article  Google Scholar 

  20. 20

    T. Hanlon, Y-N. Kwon S. Suresh: Grain size effects on the fatigue response of nanocrystalline metals. Scripta Mater. 49, 675 2003

    CAS  Article  Google Scholar 

  21. 21

    S. Cheng, J.A. Spencer W.W. Milligan: Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals. Acta Mater. 51, 4505 2003

    CAS  Article  Google Scholar 

  22. 22

    J.L. Loubet, M. Bauer, A. Tonck, S. Bec B. Gauthier-Manuel: Mechanical Properties and Deformation Behaviour of Materials Having Ultra-fine Microstructures Kluwer Academic Publishers The Netherlands 1993 429–447

    Google Scholar 

  23. 23

    T. Chudoba, P. Schwaller, R. Rabe, J-M. Breguet J. Michler: Comparison of nanoindentation results obtained with Berkovich and cube-corner indenters. Philos. Mag. 86(33–35), 5265 2006

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to L. Philippe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Philippe, L., Schwaller, P., Bürki, G. et al. A comparison of microtensile and microcompression methods for studying plastic properties of nanocrystalline electrodeposited nickel at different length scales. Journal of Materials Research 23, 1383–1388 (2008). https://doi.org/10.1557/JMR.2008.0162

Download citation