Modeling of grain refinement: Part III. Al–7Si–0.3Mg aluminum alloy


Following Part I [X. Yao, et al., J. Mater. Res.23(5), 1282 (2008)] and Part II [X. Yao, et al., J. Mater. Res.23(5), 1292 (2008)] the cellular automation–finite control volume method (CAFVM) model was used to study the grain formation and microstructure morphology resulting from solidification of a commercial Al–Si–Mg alloy with Al–Ti–B grain refiner additions. The model incorporates the effect of the introduced solute Ti and the alloying elements of Si and Mg on the growth restriction factor, constitutional undercooling, and nucleation parameters. With respect to grain refinement, it is found that the alloying elements, Si and Mg, play a role that is similar to Ti qualitatively while different quantitatively. Accordingly, a concept of “equivalent solute” determined by phase diagram parameters such as the solute partitioning coefficient and the liquidus slope is proposed to clarify the effect of each solute in the alloy on grain formation during solidification. Based on the calculations and on comparison to the experimental data, a possible mechanism of grain refinement in this alloy system is proposed.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6


  1. 1

    P.S. Mohanty J.E. Gruzleski: Mechanism of grain-refinement in aluminum. Acta Metall. Mater. 44, 3749 1996

    CAS  Article  Google Scholar 

  2. 2

    S.A. Kori, B.S. Murty M. Chakraborty: Development of an efficient grain refiner for Al–7Si alloy and its modification with strontium. Mater. Sci. Eng., A 280, 58 2000

    Article  Google Scholar 

  3. 3

    G.K. Sigworth M.M. Guzdwski: Grain refining of hypoeutectic Al–Si alloys. AFS Trans. 93, 907 1985

    CAS  Google Scholar 

  4. 4

    P.A. Tondel, G. Halvorsen L. Arnberg: Grain refinement of hypoeutectic Al–Si foundry alloys in Light Metals, edited by S.K. Das Metal. Soc. of AIME Warrendale, PA 1993 783

    Google Scholar 

  5. 5

    J.A. Spittle S. Sadli: Effect of alloy variables on grain-refinement of binary aluminum-alloys with Al–Ti–B. Mater. Sci. Technol. 11, 533 1995

    CAS  Article  Google Scholar 

  6. 6

    M.A. Easton D.H. StJohn: A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles. Acta Metall. Mater. 49, 1867 2001

    CAS  Article  Google Scholar 

  7. 7

    J. Hutt, D.H. StJohn, L. Hogan A.K. Dahle: Equiaxed solidification of Al–Si alloys. Mater. Sci. Technol. 15, 495 1999

    CAS  Article  Google Scholar 

  8. 8

    Y.C. Lee, A.K. Dahle, D.H. StJohn J.E.C. Hutt: The effect of grain refinement and silicon content on grain formation in hypoeutectic Al–Si alloys. Mater. Sci. Eng., A 259, 43 1999

    Article  Google Scholar 

  9. 9

    T.E. Quested, A.T. Dinsdale A.L. Greer: The effect of the size distribution of inoculant particles on as-cast grain size in aluminum alloys. Acta Mater. 52, 3859 2004

    CAS  Article  Google Scholar 

  10. 10

    P.L. Schaffer, L. Arnberg A.K. Dahle: Segregation of particles and its influence on the morphology of the eutectic silicon phase in Al–7 wt% Si alloys. Scripta Mater. 54, 1543 2006

    Article  Google Scholar 

  11. 11

    B. Suarez-Pena J. Asensio-Lozano: Influence of Sr modification and Ti grain refinement on the morphology of Fe-rich precipitates in eutectic Al–Si die cast alloys. Scripta Mater. 54, 1543 2006

    CAS  Article  Google Scholar 

  12. 12

    A.K. Dahle, J.E.C. Hutt, Y.C. Lee D.H. StJohn: Grain formation in hypoeutectic Al–Si alloys. AFS Trans. 107, 265 1999

    CAS  Google Scholar 

  13. 13

    H.T. Lu, L.C. Wang S.K. Kung: The influence of grain refiner master alloy addition on A-356 aluminum alloy. J. Chinese Foundryman’s Assn. 29, 10 1981

    Google Scholar 

  14. 14

    M.M. Guzowski, D.A. Sentner G.K. Sigworth: UK Patent No. GB2162540A, 1986

  15. 15

    P. Desnain, Y. Fautrelle, J-L. Meyer, J-P. Requet F. Durand: Prediction of equiaxed grain density in multicomponent alloy, stirred electromagnetically. Acta Metall. Mater. 38, 1513 1990

    CAS  Article  Google Scholar 

  16. 16

    X. Yao, S.D. McDonald, A.K. Dahle, C.J. Davidson D.H. StJohn: Modeling of grain refinement: Part I. Effect of the solute titanium for aluminum. J. Mater. Res. 23(5), 1282 2008

    CAS  Article  Google Scholar 

  17. 17

    X. Yao: Modeling of microstructure formation during solidification. Ph.D. Thesis, The University of Queensland, Brisbane, Australia (2006)

    Google Scholar 

  18. 18

    M. Easton D. StJohn: Grain refinement of aluminum alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm. Metall. Mater. Trans. A 30, 1625 1999

    Article  Google Scholar 

  19. 19

    X. Yao, S.D. McDonald, A.K. Dahle, C.J. Davidson D.H. StJohn: Modeling of grain refinement: Part II. Effect of nucleant particles—TiB2 additions for aluminum. J. Mater. Res. 23(5), 1292 2008

    CAS  Article  Google Scholar 

Download references


The work was supported by the CAST Cooperative Research Centre, which was established under the Australian Government’s Cooperative Research Centres Scheme.

Author information



Corresponding author

Correspondence to X. Yao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yao, X., McDonald, S., Dahle, A. et al. Modeling of grain refinement: Part III. Al–7Si–0.3Mg aluminum alloy. Journal of Materials Research 23, 1301–1306 (2008).

Download citation