Stress corrosion of organosilicate glass films in aqueous environments: Role of pH


Subcritical cracking of thin glass films caused by stress-corrosion phenomena cannot be neglected when it comes to application and manufacturing processes that involve exposure to aqueous environments. A protocol is introduced to allow for a quantitative study of stress corrosion through channel cracking experiments. By this method, an exponential dependence of the crack propagation rate on the pH of the aqueous environment is revealed. Therefore, this behavior should be accounted for through the use of an appropriate pre-exponential factor in the expression of channel cracking rate. This factor should reflect the reduced crack resistance of the glass film caused by the weakening of the silica bonds behind the crack tip in the aqueous environment. A direct comparison between commercial slurries and reference solutions confirms that the crack resistance is a function of the pH of the ambient.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6


  1. 1

    K. Maex, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma, Z.S. Yanovitskaya: Low-dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793 2003

    CAS  Article  Google Scholar 

  2. 2

    F. Iacopi, S.H. Brongersma, B. Vandevelde, M. O’Toole, D. Degryse, Y. Travaly, K. Maex: Challenges for structural stability of ultra-low-k-based interconnects. Microelectron. Eng.75(1), 54 2004

    CAS  Article  Google Scholar 

  3. 3

    R.J.O.M. Hoofman, V.H. Nguyen, V. Arnal, M. Broekhaart, L.G. Gosset, W.F.A. Besling, M. Fayolle, F. Iacopi: Integration of low-k dielectric films in damascene processes in Dielectrics for Microelectronics, edited by M. Baklanov, K. Maex, and M. Green Wiley & Sons Chichester, UK 2007 Chap. 5 238–239

    Google Scholar 

  4. 4

    R.K. Singh, R. Bajaj: Advances in chemical–mechanical planarization. Mater. Res. Soc. Bull. 27(10), 743 2002

    CAS  Article  Google Scholar 

  5. 5

    R.F. Cook, Z. Suo: Mechanisms active during fracture under constraint. Mater. Soc. Bull. 27, 45 2002

    CAS  Article  Google Scholar 

  6. 6

    R.F. Cook, E.G. Liniger: Stress-corrosion cracking of low-dielectric constant spin-on-glass thin films. J. Electrochem. Soc. 146(12), 4439 1999

    CAS  Article  Google Scholar 

  7. 7

    T.Y. Tsui, A.J. Griffin, R. Fields, J.M. Jacques, A. McKerrow, J.J. Vlassak: The effect of elastic modulus on channel crack propagation in organosilicate glass films. Thin Solid Films 515(4), 2257 2006

    CAS  Article  Google Scholar 

  8. 8

    T.Y. Tsui, A.J. McKerrow, J.J. Vlassak: Constraints effects on thin film channel cracking behavior. J. Mater. Res. 20(9), 2266 2005

    CAS  Article  Google Scholar 

  9. 9

    S.M. Wiederhorn, H. Johnson: Influence of sodium-hydrogen ion-exchange on crack propagation in soda-lime silicate glass. J. Am. Ceram. Soc. 56(2), 108 1973

    CAS  Article  Google Scholar 

  10. 10

    E.P. Guyer, R.H. Dauskardt: Fracture of nanoporous thin-film glasses. Nat. Mater. 3, 53 2004

    CAS  Article  Google Scholar 

  11. 11

    J.M. Jacques, T.Y. Tsui, A.J. McKerrow, R. Kraft: Environmental effects on crack characteristics for OSG materials in Thin Films—Stresses and Mechanical Properties XI, edited by T.E. Buchheit, A.M. Minor, R. Spolenak, and K. Takashima Mater. Res. Soc. Symp. Proc. 875 Warrendale, PA 2005 O10.6.1

  12. 12

    M.R. Baklanov, K.P. Mogilnikov, V.G. Polovinkin, F.N. Dultsev: Determination of pore-size distribution in thin films by ellipsometric porosimetry. J. Vac. Sci. Technol., B 18(3), 1385 2000

    CAS  Article  Google Scholar 

  13. 13

    F. Iacopi, Y. Travaly, M. Van Hove, A.M. Jonas, J.M. Molina-Aldareguia, M.R. Elizalde, I. Ocaña: Extent of plasma damage to porous organosilicate films characterized with nanoindentation, x-ray reflectivity and surface acoustic waves. J. Mater. Res. 21(12), 3161 2006

    CAS  Article  Google Scholar 

  14. 14

    J.L. Beuth Jr.: Cracking of thin bonded films in residual tension. Int. J. Solids Struct. 29, 1657 1992

    Article  Google Scholar 

  15. 15

    E. Guyer, R.H. Dauskardt: Effect of solution pH on the accelerated cracking of nanoporous thin-film glasses. J. Mater. Res. 20(3), 680 2005

    CAS  Article  Google Scholar 

  16. 16

    B. Lawn: Ch. 5, Chemical processes in crack propagation: Kinetic fracture in Fracture of Brittle Solids, 2nd ed. Cambridge University Press Cambridge, UK 1993 130–131

    Google Scholar 

  17. 17

    S.M. Wiederhorn, H. Johnson: Effect of aqueous-solutions on crack-propagation of glass. Am. Ceram. Soc. Bull. 51(4), 372 1972

    Google Scholar 

  18. 18

    S.M. Wiederhorn, H. Johnson: Effect of the electrolyte pH on crack propagation in glass. J. Am. Ceram. Soc. 56(4), 192 1973

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to F. Iacopi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iacopi, F., Elia, C., Fournier, T. et al. Stress corrosion of organosilicate glass films in aqueous environments: Role of pH. Journal of Materials Research 23, 862–868 (2008).

Download citation