Enhancement of thermal conductivity in ceramics obtained from a combustion synthesized AlN powder by microwave sintering and reheating

Abstract

A combustion-synthesized AlN powder was investigated for use as a starting material in obtaining a high thermal conductivity AlN by microwave sintering followed by microwave reheating under a reducing atmosphere. Microwave sintering was found to proceed very quickly so that a density of 99.5% of theoretical with a thermal conductivity of 165 W/mK was achieved after sintering at 1900 °C for 5 min. The thermal conductivity could be improved by prolonging the soaking time, which is attributed to decreases in both oxygen content and secondary phases by evaporation and sublimation of the secondary phases. The reducing atmosphere was created by adding carbon particles to the AlN packing powder surrounding the specimen. The thermal conductivity could be significantly improved by microwave reheating of the sintered specimen under the reducing atmosphere. This is considered to be due to enhanced removal of the secondary phases by the reducing atmosphere. Sintering under the reducing atmosphere was found to retard densification because of the earlier removal of the secondary phases, thus resulting in a poor densification and a low thermal conductivity.

This is a preview of subscription content, access via your institution.

TABLE I.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

References

  1. 1

    G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande: The intrinsic thermal conductivity of AlN. J. Phys. Chem. Solids 48(7), 641 1987

    CAS  Article  Google Scholar 

  2. 2

    T.J. Mroz Jr.: Annual materials review: Aluminum nitride. Am. Ceram. Soc. Bull. 71, 782 1992

    CAS  Google Scholar 

  3. 3

    L.M. Sheppard: Aluminum nitride: A versatile but challenging material. Am. Ceram. Soc. Bull. 69, 1801 1990

    Google Scholar 

  4. 4

    B. Bachilard, P. Joubert: Aluminum nitride by carbothermal nitridation. Mater. Sci. Eng., A 109, 247 1989

    Article  Google Scholar 

  5. 5

    A.G. Merzhanov, I.P. Borovinskaya: New class of combustion processes. Combust. Sci. Technol. 10, 195 1975

    CAS  Article  Google Scholar 

  6. 6

    C.N. Lin, S.L. Chung: Combustion synthesis of aluminum nitride powder using additives. J. Mater. Res. 16(8), 2200 2001

    CAS  Article  Google Scholar 

  7. 7

    C.N. Lin, S.L. Chung: A combustion synthesis method for synthesis of aluminum nitride powder using aluminum container. J. Mater. Res. 16(12), 3518 2001

    CAS  Article  Google Scholar 

  8. 8

    C.N. Lin, S.L. Chung: Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II). J. Mater. Res. 19(10), 3037 2004

    CAS  Article  Google Scholar 

  9. 9

    C.Y. Hsieh, S.L. Chung: High thermal conductivity epoxy molding compound filled with a combustion synthesized AlN powder. J. Appl. Polym. Sci. 102, 4737 2006

    Article  Google Scholar 

  10. 10

    C.Y. Hsieh, C.N. Lin, S.L. Chung, J. Cheng, D.K. Agrawal: Microwave sintering of AlN powder synthesized by a SHS method. J. Eur. Ceram. Soc. 27, 343 2007

    CAS  Article  Google Scholar 

  11. 11

    T.B. Jackson, A.V. Vikar, K.L. More, R.B. Dinwiddie: High-thermal-conductivity aluminum nitride ceramics: The effect of thermodynamic, kinetic, and microstructural factors. J. Am. Ceram. Soc. 6, 1421 1997

    Google Scholar 

  12. 12

    H. Nakano, K. Watari, H. Hayashi, K. Urabe: Microstructure characterization of high-thermal-conductivity aluminum nitride ceramic. J. Am Ceram. Soc. 12, 3093 2002

    Google Scholar 

  13. 13

    H. Nakano, K. Watari, K. Urabe: Grain boundary phase in AlN ceramics fired under reducing N2 atmosphere with carbon. J. Eur. Ceram. Soc. 23, 1761 2003

    CAS  Article  Google Scholar 

  14. 14

    J. Cheng, D. Agrawal, R. Roy, P.S. Jayan: Continuous microwave sintering of alumina abrasive grits. J. Mater. Proc. Technol. 108, 26 2000

    CAS  Article  Google Scholar 

  15. 15

    J.D. Katz, R.D. Blake: Microwave sintering of multiple alumina and composite components. Am. Ceram. Soc. Bull. 70, 1304 1991

    CAS  Google Scholar 

  16. 16

    J. Wang, J. Binner, B. Vaidhyanathan, N. Joomun, J. Kliner, G. Dimitrakis, T.E. Cross: Evidence for the microwave effect during hybrid sintering. J. Am. Ceram. Soc. 6, 1977 2006

    Article  Google Scholar 

  17. 17

    J. Cheng, D. Agrawal, Y. Zhang, R. Roy: Development of translucent aluminum nitride (AlN) using microwave sintering process. J. Electroceram. 9, 67 2002

    CAS  Article  Google Scholar 

  18. 18

    G.F. Xu, T. Olorunyolemi, O.C. Wilson, I.K. Lloyd, Y. Carmel: Microwave sintering of high-density, high thermal conductivity AlN. J. Mater. Res. 17(11), 2837 2002

    CAS  Article  Google Scholar 

  19. 19

    K. Komeya, H. Inoue, A. Tsuge: Effect of various additives on sintering of aluminum nitride. Yogyo-Kyokai-Shi. 6, 330 1981

    Article  Google Scholar 

  20. 20

    A.M. Hundere, M. Einarsrud: Effects of reduction of the Al-Y-O containing secondary phases during sintering of AlN with YF3 additions. J. Eur. Ceram. Soc. 16, 899 1996

    CAS  Article  Google Scholar 

  21. 21

    A.V. Virkar, T.B. Jackson, R.A. Cutler: Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminum nitride. J. Am. Ceram. Soc. 72, 2031 1989

    CAS  Article  Google Scholar 

  22. 22

    K. Watari, H. Nakano, K. Urabe, K. Ishizaki, S. Cao, K. Mori: Thermal conductivity of AlN ceramic with a very low amount of grain boundary phase at 4 to 1000 K. J. Mater. Res. 17(11), 2940 2002

    CAS  Article  Google Scholar 

  23. 23

    N. Kuramoto, H. Taniguchi, Y. Numata, I. Aso: Sintering process of translucent AlN and effect of impurities on thermal conductivity of AlN ceramics. Yogyo-Kyokai-Shi. 93(9), 517 1985

    CAS  Article  Google Scholar 

  24. 24

    R. Terao, J. Tatami, T. Meguro, K. Komeya: Fracture behavior of AlN ceramics with rare earth oxides. J. Eur. Ceram. Soc. 22, 1051 2002

    CAS  Article  Google Scholar 

  25. 25

    A. Bellosi, L. Esposito, E. Scafe, L. Fabbri: The influence of microstructure on the thermal conductivity of aluminum nitride. J. Mater. Sci. 29, 5014 1994

    CAS  Article  Google Scholar 

  26. 26

    K.H. Brosnan, G.L. Messing, D.K. Agrawal: Microwave sintering of alumina at 2.45 GHz. J. Am. Ceram. Soc. 86, 1307 2003

    CAS  Article  Google Scholar 

  27. 27

    T. Yagi, K. Shinozaki, M. Kato, Y. Sawada, N. Mizutani: Migration of grain boundary phase of AlN ceramics on joined sample of sintered and hot-pressed body. J. Ceram. Soc. Jpn. 98, 198 1990

    CAS  Article  Google Scholar 

  28. 28

    Tokuyama alumina nitride: http://www.shapal.jp/english/data/data_funmatsu.html.

  29. 29

    K. Watari, M. Kawamoto, K. Ishizaki: Sintering chemical reactions to increase thermal conductivity of aluminum nitride. J. Mater. Sci. 26, 4727 1991

    CAS  Article  Google Scholar 

  30. 30

    H. Yan, W.R. Cannon, D.J. Shanefield: Evolution of carbon during burnout and sintering of tape-cast aluminum nitride. J. Am. Ceram. Soc. 1, 166 1993

    Article  Google Scholar 

Download references

Acknowledgment

Support of this research by the National Science Council of the Republic of China under Grant No. NSC 93-2214-E-006-013 is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shyan-Lung Chung.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chung, SL., Hsieh, CY. & Chang, CW. Enhancement of thermal conductivity in ceramics obtained from a combustion synthesized AlN powder by microwave sintering and reheating. Journal of Materials Research 23, 819–827 (2008). https://doi.org/10.1557/JMR.2008.0094

Download citation