Skip to main content
Log in

Effect of WC content on glass formation, thermal stability, and phase evolution of a TiNbCuNiAl alloy synthesized by mechanical alloying

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Amorphous Ti66Nb13Cu8Ni6.8Al6.2 alloy powders with different tungsten carbide (WC) contents were synthesized by mechanical alloying. Outstanding differences in particle size, thermal stability, glass-forming ability, and phase evolution are found for the synthesized Ti-based glassy powders with different WC contents. This is attributed to the fact that the WC was partially alloyed into the glassy matrix and the matrix element Ti was also partially alloyed into the WC particles. The obtained glassy powders exhibit a wide supercooled liquid region above 64 K. Meanwhile, the main crystalline phase is the ductile β-Ti with a high volume fraction in the crystallized alloy powders. These two aspects offer the possibility of easily preparing a plasticity-enhanced bulk composite in the supercooled liquid region by powder metallurgy, which couples the nanosized WC particles with in situ precipitated ductile β-Ti phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
TABLE I.
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. W.H. Wang, C. Dong, C.H. Shek: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 2004

    Article  CAS  Google Scholar 

  2. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000

    CAS  Google Scholar 

  3. A.I. Salimon, M.F. Ashby, Y. Bréchet, A.L. Greer: Bulk metallic glasses: What are they good for? Mater. Sci. Eng., A 375–377, 385 2004

    Article  CAS  Google Scholar 

  4. A. Inoue: Bulk amorphous and nanocrystalline alloys with high functional properties. Mater. Sci. Eng., A 304–306, 1 2001

    Article  Google Scholar 

  5. H.C. Yim, R.D. Conner, F. Szuecs, W.L. Johnson: Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 50, 2737 2002

    Article  Google Scholar 

  6. K.B. Kim: Formation of in-situ nanoscale Ag particles in (Ti0.33Zr0.33Hf0.33)40(Ni0.33Cu0.33Ag0.33)50Al10 alloy with wide supercooled liquid region. Mater. Lett. 59, 1117 2005

    Article  CAS  Google Scholar 

  7. F.Q. Guo, H.J. Wang, S.J. Poon, G.J. Shiflet: Ductile titanium- based glassy alloy ingots. Appl. Phys. Lett. 86, 091907 2005

    Article  CAS  Google Scholar 

  8. Y.C. Kim, W.T. Kim, D.H. Kim: A development of Ti-based bulk metallic glass. Mater. Sci. Eng., A 375, 127 2004

    Article  CAS  Google Scholar 

  9. G. He, W. Löser, J. Eckert: Devitrification and phase transformation of (Ti0.5Cu0.25Ni0.15Sn0.05Zr0.05)100–xMox metallic glasses. Scripta Mater. 50, 7 2004

    Article  CAS  Google Scholar 

  10. Y.K. Xu, H. Ma, J. Xu, E. Ma: Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Mater. 53, 1857 2005

    Article  CAS  Google Scholar 

  11. H.M. Fu, H.F. Zhang, H. Wang, Q.S. Zhang, Z.Q. Hu: Synthesis and mechanical properties of Cu-based bulk metallic glass composites containing in-situ TiC particles. Scripta Mater. 52, 669 2005

    Article  CAS  Google Scholar 

  12. H.C. Yim, R. Busch, W.L. Johnson: The effect of silicon on the glass forming ability of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites. J. Appl. Phys. 83, 7993 1998

    Article  Google Scholar 

  13. M.H. Lee, J.Y. Lee, D.H. Bae, W.T. Kim, D.J. Sordelet, D.H. Kim: A development of Ni-based alloys with enhanced plasticity. Intermetallics 12, 1133 2004

    Article  CAS  Google Scholar 

  14. Y.K. Xu, J. Xu: Ceramics particulate reinforced Mg65Cu20 Zn5Y10 bulk metallic glass composites. Scripta Mater. 49, 843 2003

    Article  CAS  Google Scholar 

  15. Z. Bian, R.J. Wang, W.H. Wang, T. Zhang, A. Inoue: Carbon-nanotube-reinforced Zr-based bulk metallic glass composites and their properties. Adv. Funct. Mater. 14, 55 2004

    Article  CAS  Google Scholar 

  16. H.C. Yim, R. Busch, U. Köster, W.L. Johnson: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 1999

    Article  Google Scholar 

  17. G. He, J. Eckert, W. Löser: Stability, phase transformation and deformation behavior of Ti-base metallic glass and composites. Acta Mater. 51, 1621 2003

    Article  CAS  Google Scholar 

  18. C. Fan, R.T. Ott, T.C. Hufnagel: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 2002

    Article  CAS  Google Scholar 

  19. U. Kühn, J. Eckert, N. Mattern, L. Schultz: ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Appl. Phys. Lett. 80, 2478 2002

    Article  CAS  Google Scholar 

  20. H. Ma, J. Xu, E. Ma: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 2003

    Article  CAS  Google Scholar 

  21. X.L. Fu, Y. Li, C.A. Schuh: Contributions to the homogeneous plastic flow of in situ metallic glass matrix composites. Appl. Phys. Lett. 87, 241904 2005

    Article  CAS  Google Scholar 

  22. C.C. Hays, C.P. Kim, W.L. Johnson: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 2000

    Article  CAS  Google Scholar 

  23. G. He, J. Eckert, W. Löser, L. Schultz: Novel Ti-base nanostructure–dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 2003

    Article  CAS  Google Scholar 

  24. U. Kühn, N. Mattern, A. Gebert, M. Kusy, M. Boström, U. Siegel, L. Schultz: Nanostructured Zr- and Ti-based composite materials with high strength and enhanced plasticity. J. Appl. Phys. 98, 054307 2005

    Article  CAS  Google Scholar 

  25. J. Eckert, U. Kühn, J. Das, S. Scudino, N. Radtke: Nanostructured composite materials with improved deformation behavior. Adv. Eng. Mater. 7, 587 2005

    Article  CAS  Google Scholar 

  26. J. Eckert, A. Reger-Leonhard, B. Weiß, M. Heilmaier, L. Schultz: Bulk nanostructured multicomponent alloys. Adv. Eng. Mater. 3, 41 2001

    Article  CAS  Google Scholar 

  27. J. Eckert, A. Kübler, L. Schultz: Mechanically alloyed Zr55Al10Cu30Ni5 metallic glass composites containing nanocrystalline W particles. J. Appl. Phys. 85, 7112 1999

    Article  CAS  Google Scholar 

  28. Y.L. Wang, J. Xu, R. Yang: Glass formation in high-energy ball milled Tix(Cu0.45Ni0.55)94–xSi4B2 alloys. Mater. Sci. Eng., A 352, 112 2003

    Article  CAS  Google Scholar 

  29. L.C. Zhang, J. Xu, E. Ma: Mechanically alloyed amorphous Ti50(Cu0.45Ni0.55)44−xAlxSi4B2 alloys with supercooled liquid region. J. Mater. Res. 17, 1743 2002

    Article  CAS  Google Scholar 

  30. L.C. Zhang, Z.Q. Shen, J. Xu: Glass formation in a (Ti,Zr,Hf)–(Cu,Ni,Ag)–Al high-order alloy system by mechanical alloying. J. Mater. Res. 18, 2141 2003

    Article  CAS  Google Scholar 

  31. J. Eckert: Mechanical alloying of highly processable glassy alloys. Mater. Sci. Eng., A 226–228, 364 1997

    Article  Google Scholar 

  32. M.S. El-Eskandarany, M. Omori, A. Inoue: Solid-state synthesis of new glassy Co65Ti20W15 alloy powders and subsequent densification into a fully dense bulk glass. J. Mater. Res. 20, 2845 2005

    Article  CAS  Google Scholar 

  33. P.Y. Lee, W.C. Liu, C.K. Lin, J.C. Huang: Fabrication of Mg–Y–Cu bulk metallic glass by mechanical alloying and hot consolidation. Mater. Sci. Eng., A 449–451, 1095 2007

    Article  CAS  Google Scholar 

  34. P.P. Choi, J.S. Kim, O.T.H. Nguyen, D.H. Kwon, Y.S. Kwon, J.C. Kim: Al-La-Ni-Fe bulk metallic glasses produced by mechanical alloying and spark-plasma sintering. Mater. Sci. Eng., A 449–451, 1119 2007

    Article  CAS  Google Scholar 

  35. I.K. Jeng, C.K. Lin, P.Y. Lee: Formation and characterization of mechanically alloyed Ti–Cu–Ni–Sn bulk metallic glass composites. Intermetallics 14, 957 2006

    Article  CAS  Google Scholar 

  36. I.K. Jeng, P.Y. Lee: Mechanically alloyed tungsten carbide particle/Ti50Cu28Ni15Sn7 glassy alloy matrix composites. Mater. Sci. Eng., A 449–451, 1090 2007

    Article  CAS  Google Scholar 

  37. M. Tokita: Trends in advanced SPS spark plasma sintering system and technology. J. Soc. Powder Technol. Jpn. 30, 790 1993

    Article  CAS  Google Scholar 

  38. D. Turnbull: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 1969

    Article  CAS  Google Scholar 

  39. P.P. Chattopadhyay, P.M.G. Nambissan, S.K. Pabi, I. Manna: Polymorphic bcc to fcc transformation of nanocrystalline niobium studied by positron annihilation. Phys. Rev. B 63, 054107 2001

    Article  CAS  Google Scholar 

  40. I. Manna, P.P. Chattopadhyay, P. Nandi, F. Banhart, H-J. Fecht: Formation of face-centered-cubic titanium by mechanical attrition. J. Appl. Phys. 93, 1520 2003

    Article  CAS  Google Scholar 

  41. Y.Y. Li, C. Yang, W.P. Chen, X.Q. Li, M. Zhu: Oxygen-induced amorphization of metallic titanium by ball milling. J. Mater. Res. 22, 1927 2007

    Article  CAS  Google Scholar 

  42. Titanium and Titanium Alloys, edited by C. Leyens and M. Peters, translated into Chinese by Z.H. Chen {etet al.} Chemical Industry Press Beijing, People’s Republic of China 2005 8

    Google Scholar 

  43. Binary Alloy Phase Diagrams, edited by S. Nagasaki and M. Hirabayashi in Japanese AGNE Gijutsu Center, Co., Ltd. Tokyo, Japan 2002), translated into Chinese by A.S. Liu (Metallurgical Industry Press, Beijing, People’s Republic of China, 2004 227

Download references

Acknowledgments

This work was supported by the National Science Fund of China for Distinguished Young Scholars (No. 50325516), the National High Technology Research and Development Program of China (No. 2007AA03Z112), the MOST (No. 2007CB616905), the Guangdong Natural Science Foundation (No. 07300579), the China Postdoctoral Science Foundation (No. 20060390198), and the Postdoctoral Innovation Foundation of South China University of Technology (No. 05243). The authors are very grateful to Senior Engineer X.F. Ruan from Wuhan University for his technical assistances in the SPS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Yang, C., Chen, W. et al. Effect of WC content on glass formation, thermal stability, and phase evolution of a TiNbCuNiAl alloy synthesized by mechanical alloying. Journal of Materials Research 23, 745–754 (2008). https://doi.org/10.1557/JMR.2008.0087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0087

Navigation