Epitaxial growth, dielectric response, and microstructure of compositionally graded (Ba,Sr)TiO3 thin films grown on (100) MgO substrates by pulsed laser deposition

Abstract

Compositionally graded (Ba1−xSrx)TiO3 (BST) thin films (with 0.0 ⩽ x ⩽ 0.25) were grown by pulsed laser deposition on the (100)MgO single-crystal substrates covered with a conductive La0.5Sr0.5CoO3 (LSCO) layer as a bottom electrode. Their epitaxial growth, dielectric response, and microstructure were characterized. The epitaxial relationships between the BST, LSCO, and MgO can be determined as [001]BST//[001]LSCO//[001]MgO and (100)BST//(100)LSCO//(100)MgO, from the x-ray diffraction (rocking curve, ϕ scans) and electron-diffraction patterns. Dielectric data showed that the room temperature values of the dielectric constant and dielectric loss of the graded BST films were 630 and 0.017 at 100 kHz, respectively. Cross-sectional transmission electron microscopy (TEM) images reveal that both the BST films and the LSCO bottom electrode grow with a columnar structure, and they have flat interfaces and overall uniform thickness across the entire specimen. Cross-sectional high-resolution TEM images reveal that at the LSCO/MgO(100) interface, an interfacial reaction is not seen, whereas edge-type interfacial dislocations with their extra half-planes residing in the LSCO side are observed with an average interval of 2.20 nm, close to the theoretical value of 2.15 nm. At/near the LSCO/BST interface, the graded BST films grow perfectly and coherently on the LSCO lattice because they have the same type of crystal structure and almost same lattice constants, and no interfacial dislocations are observed. Planar TEM images show that the graded films exhibit granular and/or polyhedral morphologies with an average grain size of 50 nm, and the aligned rectangular-shaped voids were also observed. High-resolution TEM images show that the length sizes of voids vary from 8 to 15 nm, and with width of 5 to 10 nm along the 〈001〉 direction in the (100) plane.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

References

  1. 1

    J.F. Scott: High-dielectric constant thin films for dynamic random access memories (DRAM). Ann. Rev. Mater. Sci. 28, 79 1998

    CAS  Article  Google Scholar 

  2. 2

    G.W. Dietz, M. Schumacher, R. Waser, S.K. Streiffer, C. Basceri, A.I. Kingon: Leakage currents in Ba0.7Sr0.3TiO3 thin films for ultrahigh-density dynamic random access memories. J. Appl. Phys. 82, 2359 1997

    CAS  Article  Google Scholar 

  3. 3

    R.E. Jones: Integration of ferroelectric nonvolatile memories. Solid State Technol. 40, 201 1997

    CAS  Google Scholar 

  4. 4

    J.P. Maria, S. Trolier-McKinstry, D.G. Schlom ISAF’96: Proceedings of the 10th IEEE International Symposium on Applications of Ferroelectrics, Vol. 1, IEEE Ultrasonics Ferroelectrics, and Frequency Control Society 1996 333

  5. 5

    X.H. Zhu, J.M. Zhu, S.H. Zhou, Z.G. Liu, N.B. Ming, S.G. Lu, H.L.W. Chan, C.L. Choy: Recent progress of (Ba,Sr)TiO3 thin films for tunable microwave devices. J. Electron. Mater. 32, 1125 2003

    CAS  Article  Google Scholar 

  6. 6

    B.H. Hoerman, G.M. Ford, L.D. Kaufmann, B.W. Wessels: Dielectric properties of epitaxial BaTiO3 thin films. Appl. Phys. Lett. 73, 2248 1998

    CAS  Article  Google Scholar 

  7. 7

    W.J. Kim, H.D. Wu, W. Chang, S.B. Qadri, J.M. Pond, S.W. Kirchoefer, D.B. Chrisey, J.S. Horwitz: Microwave dielectric properties of strained (Ba0.4Sr0.6)TiO3 thin films. J. Appl. Phys. 88, 5448 2000

    CAS  Article  Google Scholar 

  8. 8

    C.M. Carlson, T.V. Rivkin, P.A. Parilla, J.D. Perkins, D.S. Ginley, A.B. Kozyrev, V.N. Oshadchy, A.S. Pavlov: Large dielectric constant (ϵ/ϵ0 > 6000) Ba0.4Sr0.6TiO3 thin films for high-performance microwave phase shifters. Appl. Phys. Lett. 76, 1920 2000

    CAS  Article  Google Scholar 

  9. 9

    W. Chang, J.S. Horwitz, A.C. Carter, J.M. Pond, S.W. Kirchoefer, C.M. Gilmore, D.B. Chrisey: The effect of annealing on the microwave properties of Ba0.5Sr0.5TiO3 thin films. Appl. Phys. Lett. 74, 1033 1999

    CAS  Article  Google Scholar 

  10. 10

    B.H. Park, E.J. Peterson, Q.X. Jia, J. Lee, X. Zeng, W. Si, X.X. Xi: Effects of very thin strain layers on dielectric properties of epitaxial Ba0.6Sr0.4TiO3 films. Appl. Phys. Lett. 78, 533 2001

    CAS  Article  Google Scholar 

  11. 11

    R.J. Cava: Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54 2001

    CAS  Article  Google Scholar 

  12. 12

    M.W. Cole, P.C. Joshi, M.H. Ervin: La doped Ba1−xSrxTiO3 thin films for tunable device applications. J. Appl. Phys. 89, 6336 2001

    CAS  Article  Google Scholar 

  13. 13

    C.L. Chen, J. Shen, S.Y. Chen, G.P. Luo, C.W. Chu, F.A. Miranda, F.W. Van Keuls, J.C. Jiang, E.I. Meletis, H.Y. Chang: Epitaxial growth of dielectric Ba0.6Sr0.4TiO3 thin film on MgO for room temperature microwave phase shifters. Appl. Phys. Lett. 78, 652 2001

    CAS  Article  Google Scholar 

  14. 14

    C.L. Canedy, H. Li, S.P. Alpay, L. Salamanca-Riba, A.L. Roytburd, R. Ramesh: Dielectric properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films: Effect of internal stresses and dislocationtype defects. Appl. Phys. Lett. 77, 1695 2000

    CAS  Article  Google Scholar 

  15. 15

    M.W. Cole, W.D. Nothwang, C. Hubbard, E. Ngo, M. Ervin: Low-dielectric loss and enhanced tunability of Ba0.6Sr0.4TiO3 based thin films via material compositional design and optimized film processing methods. J. Appl. Phys. 93, 9218 2003

    CAS  Article  Google Scholar 

  16. 16

    D.M. Bubb, J.S. Horwitz, S.B. Qadri, S.W. Kirchoefer, C. Hubert, J. Levy: (Ba,Sr)TiO3 thin films grown by pulsed laser deposition with low-dielectric loss at microwave frequencies. Appl. Phys. A 79, 99 2004

    CAS  Article  Google Scholar 

  17. 17

    O. Auciello, S. Saha, D.Y. Kaufman, S.K. Streiffer, W. Fan, B. Kabius, J. Im, P. Baumann: Science and technology of high-dielectric constant thin films and materials integration for application to high frequency devices. J. Electroceram. 12, 119 2004

    CAS  Article  Google Scholar 

  18. 18

    S. Zhang, S.P. Alpay, M.M. Cole, E. Ngo, S. Hirsch, J.D. Demaree: High tunable and temperature insensitive multiplayer barium titanate films. Appl. Phys. Lett. 90, 092901–1 2007

    Article  Google Scholar 

  19. 19

    D. Dimos, C.H. Muller: Perovskite thin films for high-frequency capacitor applications. Ann. Rev. Mater. Sci. 28, 397 1998

    CAS  Article  Google Scholar 

  20. 20

    W. Chang, J.S. Horwitz, A.C. Carter, J.M. Pond, S.W. Kirchoefer, C.M. Gilmore, D.B. Chrisey: The effect of annealing on the microwave properties of Ba0.5Sr0.5TiO3 thin films. Appl. Phys. Lett. 74, 1033 1999

    CAS  Article  Google Scholar 

  21. 21

    S.B. Desu: Influence of stresses on the properties of ferroelectric BaTiO3 thin films. J. Electrochem. Soc. 140, 2981 1993

    CAS  Article  Google Scholar 

  22. 22

    T.M. Shaw, Z. Suo, M. Huang, E. Liniger, R.B. Laibowitz, J.D. Baniecki: The effect of stress on the dielectric properties of barium strontium titanate thin films. Appl. Phys. Lett. 75, 2129 1999

    CAS  Article  Google Scholar 

  23. 23

    W. Chang, C.M. Gilmore, W.J. Kim, J.M. Pond, S.W. Kirchoefer, S.B. Qadri, D.B. Chirsey, J.S. Horwitz: Influence of strain on microwave dielectric properties of (Ba,Sr)TiO3 thin films. J. Appl. Phys. 87, 3044 2000

    CAS  Article  Google Scholar 

  24. 24

    J.S. Horwitz, W.T. Chang, W. Kim, S.B. Qadri, J.M. Pond, S.W. Kirchoefer, D.B. Chrisey: The effect of stress on the microwave dielectric properties of Ba0.5Sr0.5TiO3 thin films. J. Electroceram. 4, 357 2000

    CAS  Article  Google Scholar 

  25. 25

    H. Li, A.L. Roytburd, S.P. Alpay, T.D. Tran, L. Salamanca-Riba, R. Ramesh: Dependence of dielectric properties on internal stresses in epitaxial barium strontium titanate thin films. Appl. Phys. Lett. 78, 2354 2001

    CAS  Article  Google Scholar 

  26. 26

    Z.G. Ban, S.P. Alpay: Optimization of the tunability of barium strontium titanate films via epitaxial stresses. J. Appl. Phys. 93, 504 2003

    CAS  Article  Google Scholar 

  27. 27

    W.K. Simon, E.K. Akdogan, A. Safari: Misfit strain relaxation in (Ba0.60Sr0.40)TiO3 epitaxial thin films on orthorhombic NdGaO3 substrates. Appl. Phys. Lett. 89, 022902 2006

    Article  Google Scholar 

  28. 28

    X.H. Zhu, H.L.W. Chan, C.L. Choy, K.H. Wong: Epitaxial growth and dielectric properties of functionally-graded (Ba1−xSrx)TiO3 thin films with stoichiometric variation. J. Vac. Sci. Technol., A 20, 1796 2002

    CAS  Article  Google Scholar 

  29. 29

    X.H. Zhu, N. Chong, H.L.W. Chan, C.L. Choy, Z.G. Liu, N.B. Ming: Epitaxial growth and planar dielectric properties of compositionally graded (Ba1−x Srx)TiO3 thin films prepared by pulsed laser deposition. Appl. Phys. Lett. 80, 3376 2002

    CAS  Article  Google Scholar 

  30. 30

    X.H. Zhu, S.G. Lu, H.L.W. Chan, C.L. Choy, K.H. Wong: Microstructures and dielectric properties of compositionally graded (Ba1−xSrx)TiO3 thin films prepared by pulsed laser deposition. Appl. Phys. A. 76, 225 2003

    CAS  Article  Google Scholar 

  31. 31

    S.G. Lu, X.H. Zhu, C.L. Mak, K.H. Wong, H.L.W. Chan, C.L. Choy: High tunability in compositionally graded epitaxial barium strontium titanate thin films by pulsed laser deposition. Appl. Phys. Lett. 82, 2877 2003

    CAS  Article  Google Scholar 

  32. 32

    S.J. Lee, S.E. Moon, H.C. Ryu, M.H. Kwak, Y.T. Kim, S.K. Han: Microwave properties of compositionally graded (Ba,Sr)TiO3 thin films according to the direction of the composition gradient for tunable microwave applications. Appl. Phys. Lett. 82, 2133 2003

    CAS  Article  Google Scholar 

  33. 33

    S.J. Lee, S.E. Moon, M.H. Kwak, H.C. Ryu, Y.T. Kim, S.K. Han: Microwave properties of compositionally graded (Ba,Sr)TiO3 thin films for electrically tunable microwave devices. Integr. Ferroelectr. 49, 151 2002

    CAS  Article  Google Scholar 

  34. 34

    X.H. Zhu, J.M. Zhu, S.H. Zhou, Z.G. Liu, N.B. Ming, H.L.W. Chan, C.L. Choy, K.H. Wong, D. Hesse: Microstructure and dielectric properties of compositionally-graded (Ba1−xSrx)TiO3 thin films. Mater. Sci. Eng., B 118, 219 2005

    Article  Google Scholar 

  35. 35

    JCPDS Nos. 4-0829, 44-0093. International Center for Diffraction Data Newton Square, PA, 2001

  36. 36

    F.S. Galasso Structure, Properties and Preparation of Perovskitetype Compounds (Pergamon Press, Oxford, 1969), Chap. 1

    Google Scholar 

  37. 37

    J.W. Mathews, A.E. Blakeslee: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118 1974

    Google Scholar 

  38. 38

    R. People, J.C. Bean: Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strain-layer heterostructures. Appl. Phys. Lett. 47, 322 1985

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Natural Science Foundation of Jiangsu Province (Project No. BK2007130), opening project Z010804 of National Laboratory of Solid State Microstructures, and National Natural Science Foundation of China under Grant Nos. 60576023 and 60636010.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xinhua Zhu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhu, X., Zhu, J., Zhou, S. et al. Epitaxial growth, dielectric response, and microstructure of compositionally graded (Ba,Sr)TiO3 thin films grown on (100) MgO substrates by pulsed laser deposition. Journal of Materials Research 23, 737–744 (2008). https://doi.org/10.1557/JMR.2008.0086

Download citation