REMO4 (RE = Y, Gd; M = Nb, Ta) phosphors from hybrid precursors: Microstructure and luminescence

Abstract

In this paper, YNbO4:0.05Tb3+ and GdTaO4:0.05Eu3+ phosphors were chosen to study the influence of the firing temperature on the phase and morphologies using novel modified in situ chemical coprecipitation technology. Results show that until the temperature reaches 1000 °C, the formation of YNbO4 and GdTaO4 were realized; with the increasing firing temperatures, those samples present better crystalline structure and better morphologies. The luminescent properties of Eu3+ and Tb3+ have shown that after calcinations at 1000 °C, the intensity of Eu3+ and Tb3+ increases strongly with the increasing of the calcinations temperature, while remaining relatively unchanged at the temperatures ranging between 600 and 800 °C. Furthermore, other rare earth ion doped GdTaO4 and Y1−xGdxTaO4:5 mol% Eu3+ with the different yttrium content were also synthesized after calcinating at the preferable temperature using the same method. The photoluminescence of Y1−xGdxTaO4:5 mol% Eu3+ revealed that the red emission intensity of Eu3+ increases with the increasing of gadolinium content, indicating that Gd ion plays an important role in the energy transfer process. Also, the concentration quenching has been studied in the GdTaO4:Eu3+/Dy3+ systems. Moreover, the characteristic emission lines of Tb3+, Pr3+, and Er3+ in GdTaO4 were observed, showing that the energy transfer process appears between host and those activators.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

References

  1. 1

    L.H. Brixner: On the development and application of new highly efficient x-ray phosphors in Abstracts of Papers of the American Chemical Society, 211:323-INOR Part 1, March 24, 1996

    Google Scholar 

  2. 2

    G. Blasse, A. Bril: Luminescence phenomena in compounds with fergusonite structure. J. Lumin. 3, 109 1970

    CAS  Article  Google Scholar 

  3. 3

    G. Blasse: Vibrational spectra of yttrium niobate and tantalate. J. Solid State Chem. 7, 169 1973

    CAS  Article  Google Scholar 

  4. 4

    R.C. Ropp: Luminescence and the Solid State Elsevier Science Amsterdam 1991

    Google Scholar 

  5. 5

    M.J.J. Lammers, G. Blasse: Energy transfer phenomena in Tb3+-activated gadolinium tantalite. Mater. Res. Bull. 19, 759 1984

    CAS  Article  Google Scholar 

  6. 6

    L.H. Brixner, H.Y. Chen: On the structural and luminescent properties of the M′ LnTaO4 rare earth tantalates. J. Electrochem. Soc. 130, 2435 1983

    CAS  Article  Google Scholar 

  7. 7

    V.V. Molchanov, M.G. Zuev, L.M. Plyasova, S.V. Bogdanov: Mechanochemical synthesis of yttrium and lanthanum tantalates. Inorg. Mater. 40, 73 2004

    CAS  Article  Google Scholar 

  8. 8

    M.G. Zuev, L.P. Larionov: Rare-Earth Compounds with Simple and Complex Group V Transition-Metal Anions: Synthesis, Composition, Structure, and Properties Ural. Otd. Ross. Akad. Nauk Yekaterinaburg 1999

    Google Scholar 

  9. 9

    B. Yan, H.H. Huang: In-situ sol-gel synthesis of luminescent Y2SiO5:Tb3+ nanophosphors derived from an assembly of hybrid precursors. J. Mater. Sci. 39, 3529 2004

    CAS  Article  Google Scholar 

  10. 10

    X.Z. Xiao, B. Yan: Synthesis and luminescent properties of novel RENbO4:Ln3+ (RE = Y, Gd, Lu; Ln = Eu, Tb) micro-crystalline phosphors. J. Non-Cryst. Solids 351, 3634 2005

    CAS  Article  Google Scholar 

  11. 11

    X.Q. Su, B. Yan: Matrix-inducing synthesis and luminescence of microcrystalline red phosphors YVO4: Pb2+, Eu3+, derived from the in situ coprecipitation of hybrid precursors. Inorg. Mater. 42, 59 2006

    CAS  Article  Google Scholar 

  12. 12

    X.H. Chuai, H.J. Zhang, F.S. Li: Luminescence properties of Eu(phen)2Cl3 doped in sol-gel-derived SiO2-PEG matrix. Mater. Lett. 46, 244 2000

    CAS  Article  Google Scholar 

  13. 13

    R. Almeida Silva, G. Tirao, C. Cusatis, J.P. Andreeta: Growth and structural characterization of M-type GdTaO4 single crystal fiber. J. Cryst. Growth 274, 512 2005

    CAS  Article  Google Scholar 

  14. 14

    J.M. Jehng, I.E. Wachs: Structural chemistry and Raman spectra of niobium oxides. Chem. Mater. 3, 100 1991

    CAS  Article  Google Scholar 

  15. 15

    H. Weitzel, H.Z. Schröcke: Crystal structure refinement of euxenite, Y(Nb0,5Ti0,5)2O6, and M-fergusonite YNbO4. Kristallografiya 152, 69 1980

    CAS  Article  Google Scholar 

  16. 16

    O. Yamaguchi, K. Matsui, T. Kawabe: Crystallization and transformation of distorted tetragonal YNbO4. J. Am. Ceram. Soc. 68, C275 1985

    Google Scholar 

  17. 17

    A.M.G. Massabni, G.J.M. Montandon, M.A. Couto dos Santos: Synthesis and luminescence spectroscopy of YNbO4 doped with Eu (III). Mater. Res. 1, 1 1998

    CAS  Article  Google Scholar 

  18. 18

    G. Blasse, G.J. Dirksen, L.H. Brixner, M.K. Crawford: Luminescence of materials based on LuTaO4. J. Alloys Compd. 209, 1 1994

    CAS  Article  Google Scholar 

  19. 19

    B. Li, Z.N. Gua, J.H. Lin, M.Z. Su: X-ray luminescence properties of rare-earth doped orthotantalate. Mater. Res. Bull. 35, 1921 2000

    CAS  Article  Google Scholar 

  20. 20

    M. Gu, X. Xu, X.L. Liu, L.Q. Qiu, R. Zhang: Preparation and characterization of GdTaO4:Eu3+ sol-gel luminescence thin films. J. Sol.-Gel Sci. Tech. 35, 193 2005

    CAS  Article  Google Scholar 

  21. 21

    B. Yan, X.Z. Xiao: Matrix induced synthesis of LaNbO4:Tb3+ phosphors by in situ composing hybrid precursors. Opt. Mater. 28, 498 2006

    CAS  Article  Google Scholar 

  22. 22

    X.Q. Su, B. Yan, H.H. Huang: In situ co-precipitation synthesis and luminescence of GdVO4: Eu3+ and YxGd1−xVO4:Eu3+ microcrystalline phosphors derived from the assembly of hybrid precursors. J. Alloys Compd. 399, 251 2005

    CAS  Article  Google Scholar 

  23. 23

    S. Itoh, H. Toki, K. Tamura, F. Kataoka: A new red-emitting phosphor, SrTiO3:Pr3+, for low-voltage electron excitation. Jpn. J. Appl. Phys A 38, 6387 1999

    CAS  Article  Google Scholar 

  24. 24

    H. Yoshimatsu, Y. Miura, A. Osaka, H. Kawasaki, S. Ohmori: Preparation of ZrO2–Al2O3 powder by thermal decomposition of gels produced from an aluminum chelate compound and zirconium butoxide. J. Mater. Sci. 31, 4975 1996

    CAS  Article  Google Scholar 

  25. 25

    D. Carson, M. Forissier, J.C. Vedrine: Kinetic study of the partial oxidation of propene and 2-methylpropene on different phases of bismuth molybdate and on a bismuth iron molybdate phase. J. Chem. Soc. Faraday. Conclusions Trans. I 80, 1017 1984

    CAS  Article  Google Scholar 

  26. 26

    F. Rullens, A. Laschewsky, M.L. Devillers: Bulk and thin films of bismuth vanadates prepared from hybrid materials made from an organic polymer and inorganic salts. Chem. Mater. 18, 771 2006

    CAS  Article  Google Scholar 

  27. 27

    H. Wullens, D. Leroy, M. Devillers: Preparation of ternary Bi–La and Bi–Pr oxides from polyaminocarboxylate complexes. Int. J. Inorg. Mater. 3, 309 2001

    CAS  Article  Google Scholar 

  28. 28

    M. Alifanti, B. Baps, N. Blangenois, J. Naud, P. Grange, B. Delmon: Characterization of CeO2–ZrO2 mixed oxides comparison of the citrate and sol-gel preparation methods. Chem. Mater. 15, 395 2003

    CAS  Article  Google Scholar 

  29. 29

    O.A. Serra, V.P. Severino, P.S. Calefi, S.A. Cicillini: The blue phosphor Sr2CeO4 synthesized by Pechini’s method. J. Alloys Compd. 323–324, 667 2001

    Article  Google Scholar 

  30. 30

    J. Dhanaraj, R. Jagannathan, T.R.N. Kutty, C.H. Lu: Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis. J. Phys. Chem. B 105, 11098 2001

    CAS  Article  Google Scholar 

  31. 31

    P. Pramanik: Synthesis of nano particle of inorganic oxides by polymer matrix. Bull. Mater. Sci. 18, 819 1995

    CAS  Article  Google Scholar 

  32. 32

    Q.L. Zhang, C.X. Guo, C.S. Shi: Temperature effect of GdVO4:Eu3+ luminescence. Chin. J. Lumin. 21, 353 2001

    Google Scholar 

  33. 33

    A. Huignard, V. Buissette, A.C. Franville, T. Gacoin, J.P. Boilot: Emission processes in YVO4:Eu nanoparticles. J. Phys. Chem. B 107, 6754 2003

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Developing Science Fund of Tongji University and National Natural Science Foundation of China (20671072).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bing Yan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiao, X., Yan, B. REMO4 (RE = Y, Gd; M = Nb, Ta) phosphors from hybrid precursors: Microstructure and luminescence. Journal of Materials Research 23, 679–687 (2008). https://doi.org/10.1557/JMR.2008.0083

Download citation