Damage tolerance and R-curve behavior of Al2O3–ZrO2–Nb multiphase composites with synergistic toughening mechanism

Abstract

In the present work, the damage tolerance and R-curve behavior of alumina–zirconia–niobium multiphase composites were studied by the indentation strength method. A matrix of yttria-stabilized zirconia (3Y–TZP) strengthened with particles of Al2O3 (ATZ) and an alumina matrix strengthened with particles of 3Y-TZP (ZTA) were prepared by hot press of commercial powders, containing Nb metal particles as reinforcing phase. The crack growth behavior was analyzed, and it was found that stress-induced transformation toughening of ZrO2 and bridging of the Nb inclusions were the two main factors that can shield an advancing crack and exert crack closure stresses on the crack wake. Moreover, on the basis of quantitative toughening analysis, it is argued that a synergistic effect originated from the interaction between the toughening mechanisms of Nb grains and zirconia, takes place in the alumina–zirconia–Nb multiphase composites. This showed that the combined toughening effect was bigger than the sum of the individual toughening effects when either reinforcement acted alone.

This is a preview of subscription content, access via your institution.

TABLE I.
TABLE II.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
TABLE III.
TABLE IV.

References

  1. 1

    J.F. Bartolome, M. Diaz J.S. Moya: Influence of the metal particle size on the crack growth resistance in mullite-molybdenum composites. J. Am. Ceram. Soc. 73, 2778 2002

    Google Scholar 

  2. 2

    S. López-Esteban, J.F. Bartolome, J.S. Moya T. Tanimoto: Mechanical performance of 3Y-TZP/Ni composites: Tensile, bending and uniaxial fatigue tests. J. Mater. Res. 17, 1592 2002

    Article  Google Scholar 

  3. 3

    B.D. Flinn, M. Rühle A.G. Evans: Toughening in composites of Al2O3 reinforced with Al. Acta Metall. Mater. 37, 3001 1989

    CAS  Article  Google Scholar 

  4. 4

    L.S. Sigl, P.A. Mataga, B.J. Dalgleish, R.M. McMeeking A.G. Evans: On the toughness of brittle materials reinforced with a ductile phase. Acta Metall. Mater. 36, 945 1988

    CAS  Article  Google Scholar 

  5. 5

    A. Zimmermann, M. Hoffman, T. Emmel, D. Gross J. Rödel: Failure of metal–ceramic composites with spherical inclusions. Acta Mater. 49, 3177 2001

    CAS  Article  Google Scholar 

  6. 6

    O. Sbaizero, G. Pezzotti T. Nishida: Fracture energy and R-curve behavior of Al2O3/Mo composites. Acta Mater. 46, 681 1998

    CAS  Article  Google Scholar 

  7. 7

    O. Raddatz, G.A. Schneider, W. Mackens, H. Vob N. Claussen: Bridging stresses and R-curves in ceramic/metal composites. J. Eur. Ceram. Soc. 20, 2261 2000

    CAS  Article  Google Scholar 

  8. 8

    N. Nagendra V. Jayaram: Fracture and R-curves in high volume fraction Al2O3/Al composites. J. Mater. Res. 15, 1131 2000

    CAS  Article  Google Scholar 

  9. 9

    A.H. Heuer: Transformation toughening in ZrO2-containing ceramics. J. Am. Ceram. Soc. 70, 689 1987

    CAS  Article  Google Scholar 

  10. 10

    R.M. McMeeking A.G. Evans: Mechanics of transformation-toughening in brittle materials. J. Am. Ceram. Soc. 65, 242 1982

    Article  Google Scholar 

  11. 11

    R.Z. Chen, Y.T. Chiu W.H. Tuan: Toughening alumina with both nickel and zirconia inclusions. J. Eur. Ceram. Soc. 20, 1901 2000

    CAS  Article  Google Scholar 

  12. 12

    O. Sbaizero, S. Roitti G. Pezzotti: R-curve behavior of alumina toughened with molybdenum and zirconia particles. Mater. Sci. Eng., A Struct. 359, 297 2003

    Article  CAS  Google Scholar 

  13. 13

    R.Z. Chen W.H. Tuan: Toughening alumina with silver and zirconia inclusions. J. Eur. Ceram. Soc. 21, 2887 2001

    CAS  Article  Google Scholar 

  14. 14

    W.H. Tuan W.R. Chen: Mechanical properties of alumina–zirconia–silver composites. J. Am. Ceram. Soc. 78, 465 1995

    CAS  Article  Google Scholar 

  15. 15

    D.M. Stump: Toughening and stregthening of ceramics reinforced by dilatant transformations and ductile particles. Int. J. Solids Struct. 28, 669 1991

    Article  Google Scholar 

  16. 16

    M. Li, N. Katsube W.O. Soboyejo: On the interaction between transformation toughening and crack bridging by ductile layers in hybrid composites. J. Compos. Mater. 35, 1079 2001

    CAS  Article  Google Scholar 

  17. 17

    J.C. Amazigo B. Budiansky: Interaction of particulate and transformation toughening. J. Mech. Phys. Solids 36, 581 1988

    Article  Google Scholar 

  18. 18

    W.H. Tuan R.Z. Chen: Interactions between toughening mechanisms: Transformation toughening versus plastic deformation. J. Mater. Res. 17, 2921 2002

    CAS  Article  Google Scholar 

  19. 19

    Ch. Laurent, A. Rousset, P. Bonnefond, D. Oquab B. Lavelle: Mechanical properties of alumina-metal-zirconia nano-micro hybrid composites. J. Eur. Ceram. Soc. 16, 937 1996

    CAS  Article  Google Scholar 

  20. 20

    W.H. Tuan W.R. Chen: The interactions between silver and zirconia inclusions and their effects on the toughening behaviour of Al2O3/(Ag + ZrO2) composites. J. Eur. Ceram. Soc. 14, 37 1994

    CAS  Article  Google Scholar 

  21. 21

    J. Lalande, S. Scheppokat, R. Janssen N. Claussen: Toughening of alumina/zirconia ceramic composites with silver particles. J. Eur. Ceram. Soc. 22, 2165 2002

    CAS  Article  Google Scholar 

  22. 22

    R.F. Krause Jr.: Rising fracture toughness from the bending strength of indented alumina beams. J. Am. Ceram. Soc. 71, 338 1988

    CAS  Article  Google Scholar 

  23. 23

    L.M. Braun, S.J. Bennison B.R. Lawn: Objective evaluation of short-crack toughness curves using indentation flaws—Case study on alumina-based ceramics. J. Am. Ceram. Soc. 75, 3049 1992

    CAS  Article  Google Scholar 

  24. 24

    D. Basu B.K. Sarkar: Toughness determination of zirconia toughened alumina ceramics from growth of indentation-induced cracks. J. Mater. Res. 11, 3057 1996

    CAS  Article  Google Scholar 

  25. 25

    S.M. Smith R.O. Scattergood: Crack-shape effects for indentation fracture toughness measurements. J. Am. Ceram. Soc. 75, 305 1992

    CAS  Article  Google Scholar 

  26. 26

    Ch-W. Li, D-J. Lee S-Ch. Lui: R-curve behavior and strength for in situ reinforced silicon nitrides with different microstructures. J. Am. Ceram. Soc. 75, 1777 1992

    CAS  Article  Google Scholar 

  27. 27

    J.C. Newman Jr. I.S. Raju: An empirical stress-intensity factor equation for the surface crack. Eng. Fract. Mech. 15, 185 1981

    Article  Google Scholar 

  28. 28

    M.S. Kaliszewski, G. Behrens, A.H. Heuer, M.C. Shaw, D.B. Marshall, G.W. Dransmann, R.W. Steinbrech, A. Pajares, F. Guiberteau, F.L. Cumbrera A. Dominguez Rodriguez: Indentation studies on Y2O3-stabilized ZrO2.1. Development of indentation-induced cracks. J. Am. Ceram. Soc. 77, 1185 1994

    CAS  Article  Google Scholar 

  29. 29

    D.K. Shetty, I.G. Wright, P.N. Mincer A.H. Clauer: Indentation fracture of WC-Co cermets. J. Mater. Sci. 20, 1873 1985

    CAS  Article  Google Scholar 

  30. 30

    J. Alcalá M. Anglada: The Behaviour of Indentation Cracks Under Monotonic Loads in 3Y-TZP, edited by P. Durán and J.F. Feranández, (Third Euro-Ceramics) 1993 901

  31. 31

    D.B. Marshall M.V. Swain: Crack resistance curves in magnesia-partially-stabilized zirconia. J. Am. Ceram. Soc. 71, 399 1988

    CAS  Article  Google Scholar 

  32. 32

    T. Rodriguez-Suarez, S. Lopez-Esteban, J.F. Bartolome J.S. Moya: Mechanical properties of alumina-rich magnesium aluminate spinel/tungsten composites. J. Eur. Ceram. Soc. 27, 3339 2007

    CAS  Article  Google Scholar 

  33. 33

    J-F. Yang, T. Sekino, Y-H. Choa, K. Niihara T. Ohji: Microstructure and mechanical properties of sinter-post-HIPed Si3N4–SiC composites. J. Am. Ceram. Soc. 84, 406 2001

    CAS  Article  Google Scholar 

  34. 34

    A. Khan, H.M. Chan, M.P. Harmer R.F. Cook: Toughness-curve behavior of an alumina–mullite composite. J. Am. Ceram. Soc. 81, 2613 1998

    CAS  Article  Google Scholar 

  35. 35

    H. Toraya, M. Yoshimura S. Somiya: Calibration curve for quantitative-analysis of the monoclinic-tetragonal ZrO2 system by x-ray-diffraction. J. Am. Ceram. Soc. 67, C119 1984

    CAS  Google Scholar 

  36. 36

    C.S. Smithells: Metals Reference Book, Vol. 3, Butterworths London 1967

  37. 37

    R.F. Cook, E.G. Liniger, R.W. Steinbrech F. Deuerler: Sigmoidal indentation-strength characteristics of polycrystalline alumina. J. Am. Ceram. Soc. 77, 203 1994

    Google Scholar 

  38. 38

    R.F. Cook, M.R. Pascucci W.H. Rhodes: Lateral cracks and microstructural effects in the indentation fracture of yttria. J. Am. Ceram. Soc. 73, 1873 1990

    CAS  Article  Google Scholar 

  39. 39

    D.Y. Lee, D.J. Kim, D.H. Cho M.H. Lee: Effect of Nb2O5 and Y2O3 alloying on the mechanical properties of TZP ceramics. Ceram. Int. 24, 461 1998

    CAS  Article  Google Scholar 

  40. 40

    M.F. Ashby, F.J. Blunt M. Bannister: Flow characteristics of highly constrained metal wires. Acta Metall. 37, 1847 1989

    CAS  Article  Google Scholar 

  41. 41

    F.E. Heredia, M.Y. He, G.E. Lucas, A.G. Evans, H.E. Deve D. Konitzer: The fracture resistance of directionally solidified dual-phase NiAl reinforced with refractory metals. Acta Metall. Mater. 41, 505 1993

    CAS  Article  Google Scholar 

  42. 42

    B. Budiansky, J.W. Hutchinson J.C. Lambropoulus: Continuum theory of dilatant transformation toughening in ceramics. Int. J. Solids Struct. 19, 337 1983

    Article  Google Scholar 

  43. 43

    G.Th.M. Stam, E. Van der Giessen P. Meijers: Effect of transformation-induced shear strains on crack growth in zirconia containing ceramics. Int. J. Solids Struct. 31, 1923 1994

    Article  Google Scholar 

  44. 44

    B. Budiansky, J.C. Amazigo A.G. Evans: Small-scale crack bridging and the fracture-toughness of particulate-reinforced ceramics. J. Mech. Phys. Solids 36, 167 1988

    Article  Google Scholar 

  45. 45

    R.M. McMeeking A.G. Evans: Mechanics of transformation-toughening in brittle materials. J. Am. Ceram. Soc. 65, 242 1982

    Article  Google Scholar 

  46. 46

    R.C. Garvie, R.H.J. Hannink M.V. Swain: X-ray-analysis of the transformed zone in partially stabilized zirconia (PSZ). J. Mater. Sci. Lett. 1, 437 1982

    CAS  Article  Google Scholar 

  47. 47

    T. Kosmac, R. Wagner N. Claussen: X-ray determination of transformation depths in ceramics containing tetragonal ZrO2. J. Am. Ceram. Soc. 64, C72 1981

    CAS  Article  Google Scholar 

  48. 48

    B.D. Cullity: Elements of X-Ray Diffraction Addison-Wesley Reading, MA 1956

    Google Scholar 

Download references

Acknowledgments

This work was supported by European Union (EU) under project reference FP6-515784-2, by the Spanish Ministry of Science and Technology under project number MAT2006-10249-C02-01 and by the “Dirección General de Universidades e Investigación de la Consejería de Educación y Ciencia de la Comunidad de Madrid” and CSIC under project reference 200660M042. J.F. Bartolome has been supported by Ministry of Science and Technology and CSIC under the “Ramón y Cajal” Program cofinanced by European Social Fund. The authors are also grateful to Prof. J.S. Moya and Dr. C. Pecharromán for useful discussions and to Prof. A.P. Tomsia and Dr. E. Saiz for the machining samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J.F. Bartolomé.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gutiérrez-González, C., Bartolomé, J. Damage tolerance and R-curve behavior of Al2O3–ZrO2–Nb multiphase composites with synergistic toughening mechanism. Journal of Materials Research 23, 570–578 (2008). https://doi.org/10.1557/JMR.2008.0075

Download citation