Load transfer in bovine plexiform bone determined by synchrotron x-ray diffraction

Abstract

High-energy synchrotron x-ray diffraction (XRD) has been used to quantify load transfer in bovine plexiform bone. By using both wide-angle and small-angle XRD, strains in the mineral as well as the collagen phase of bone were measured as a function of applied compressive stress. We suggest that a greater proportion of the load is borne by the more mineralized woven bone than the lamellar bone as the applied stress increases. With a further increase in stress, load is shed back to the lamellar regions until macroscopic failure occurs. The reported data fit well with reported mechanisms of microdamage accumulation in bovine plexiform bone.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

References

  1. 1

    P. Zioupos J.D. Currey: The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29, 978 1994

    Article  Google Scholar 

  2. 2

    A. Ascenzi, E. Bonucci D.S. Bocciarelli: An electron microscope study on primary periosteal bone. J. Ultrastruct. Res. 18, 605 1967

    CAS  Article  Google Scholar 

  3. 3

    H.L. Leng: Micro-computed tomography of microdamage in cortical bone. Ph.D. Thesis, University of Notre Dame, South Bend, IN 2006

    Google Scholar 

  4. 4

    J.D. Almer S.R. Stock: Internal strains and stresses measured in cortical bone via high-energy x-ray diffraction. J. Struct. Biol. 152, 14 2005

    CAS  Article  Google Scholar 

  5. 5

    J.D. Almer S.R. Stock: Micromechanical response of mineral and collagen phases in bone. J. Struct. Biol. 157, 365 2007

    CAS  Article  Google Scholar 

  6. 6

    H.S. Gupta, W. Wagermaier, G.A. Zickler, D.R-B. Aroush, S.S. Funari, P. Roschger, H.D. Wagner P. Fratzl: Nanoscale deformation mechanisms in bone. Nano Lett. 5, 2108 2005

    CAS  Article  Google Scholar 

  7. 7

    H.S. Gupta, J. Seto, W. Wagermaier, P. Zaslansky, P. Boesecke P. Fratzl: Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl. Acad. Sci. U.S.A. 103, 17741 2006

    CAS  Article  Google Scholar 

  8. 8

    B. Clausen, T. Lorentzen, M.A.M. Bourke M.R. Daymond: Lattice strain evolution during uniaxial tensile loading of stainless steel. Mater. Sci. Eng., A 259, 17 1999

    Article  Google Scholar 

  9. 9

    A. Wanner D.C. Dunand: Synchrotron x-ray study of bulk lattice strains in externally loaded cu-mo composites. Metall. Mater. Trans. A 31, 2949 2000

    Article  Google Scholar 

  10. 10

    W.C. Oliver G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 2004

    CAS  Article  Google Scholar 

  11. 11

    J-Y. Rho, T.Y. Tsui G.M. Pharr: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18, 1325 1997

    CAS  Article  Google Scholar 

  12. 12

    A. Frischbutter, D. Neov, C. Scheffzuk, M. Vrana K. Walther: Lattice strain measurements on sandstones under load using neutron diffraction. J. Struct. Geol. 22, 1587 2000

    Article  Google Scholar 

  13. 13

    S.J. Covey-Crump, P.F. Schofield I.C. Stretton: Strain partitioning during the elastic deformation of an olivine–mangesiowustite aggregate. Geophys. Res. Lett. 28, 4647 2001

    Article  Google Scholar 

  14. 14

    E.C. Oliver, M.R. Daymond P.J. Withers: Interphase and intergranular stress generation in carbon steels. Acta. Mater. 52, 1937 2004

    CAS  Article  Google Scholar 

  15. 15

    A.P. Hammersley: FIT2D: An Introduction and Overview., European Synchrotron Radiation Facility(ESRF) Internal Report, ESRF97HA02T. ESRF Grenoble, France 1997

    Google Scholar 

  16. 16

    M.R. Daymond, M.A.M. Bourke R.B. Von Dreele: Use of Rietveld refinement to fit hexagonal crystal structures in the presence of elastic and plastic anisotropy. J. Appl. Phys. 85, 739 1999

    CAS  Article  Google Scholar 

  17. 17

    M.R. Daymond: Internal stresses in crystalline aggregates. Rev. Mineral. Geochem. 63, 427 2006

    CAS  Article  Google Scholar 

  18. 18

    D.H. Carter M.A.M. Bourke: Neutron diffraction study of the deformation behavior of beryllium–aluminum composites. Acta Mater. 48, 2885 2000

    CAS  Article  Google Scholar 

  19. 19

    R.B.J. Martin J. Ishida: The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J. Biomech. 22, 419 1989

    CAS  Article  Google Scholar 

  20. 20

    N. Sasaki Y. Sudoh: X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif. Tissue Int. 60, 361 1997

    CAS  Article  Google Scholar 

  21. 21

    J.W. Smith: Collagen fibre patterns in mammalian bone. J. Anat. 94, 329 1960

    CAS  Google Scholar 

  22. 22

    X. Su, K. Sun, F.Z. Cui W.J. Landis: Organization of apatite crystals in human woven bone. Bone 32, 150 2003

    CAS  Article  Google Scholar 

  23. 23

    J.D. Currey: Bones: Structure and Mechanics Princeton University Press Princeton, NJ 2002

    Google Scholar 

  24. 24

    G.C. Reilly J.D. Currey: The effects of damage and microcracking on the impact strength of bone. J. Biomech. 33, 337 2000

    CAS  Article  Google Scholar 

  25. 25

    B. Lauterbach D. Gross: The role of nucleation and growth of microcracks in brittle solids under compression: A numerical study. Acta Mech. 159, 199 2002

    Article  Google Scholar 

  26. 26

    K.S. Borsato N. Sasaki: Measurement of partition of stress between mineral and collagen phases in bone using x-ray diffraction techniques. J. Biomech. 30, 955 1997

    CAS  Article  Google Scholar 

  27. 27

    K. Fujisaki, S. Tadano N. Sasaki: A method on strain measurement of HAP in cortical bone from diffusive profile of x-ray diffraction. J. Biomech. 39, 579 2006

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (R. Akhtar) thanks Huijie Leng (University of Texas) for helpful communications and Engineering and Physical Sciences Research Council (EPSRC) for funding. Use of the Advanced Photon Source was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Akhtar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Akhtar, R., Daymond, M., Almer, J. et al. Load transfer in bovine plexiform bone determined by synchrotron x-ray diffraction. Journal of Materials Research 23, 543–550 (2008). https://doi.org/10.1557/JMR.2008.0068

Download citation