Hydrogen diffusion and effect of grain size on hydrogenation kinetics in magnesium hydrides

Abstract

Hydrogenation and dehydrogenation of metal hydrides are of great interest because of their potential in on-board applications for hydrogen vehicles. This paper aims to study hydrogen diffusion in metal hydrides, which is generally considered to be a controlling factor of hydrogenation/dehydrogenation. The present work first calculated temperature-dependent hydrogen diffusion coefficients by a theoretical model incorporated with experimental data in a Mg-based system and accordingly the activation energy. The grain size effect on diffusion in nanoscale was also investigated.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

References

  1. 1

    J. Huot, G. Liang, S. Boily, A. Van Neste R. Schulz: Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J. Alloys Compd. 293–295, 495 1999

    Article  Google Scholar 

  2. 2

    I. Zaluski, A. Zaluska J.O. Strom-Olsen: Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. J. Appl. Phys. A 72, 157 2001

    Article  Google Scholar 

  3. 3

    G. Liang, S. Boily, J. Huot, A. Van Neste R. Schulz: Hydrogen absorption properties of a mechanically milled Mg-50wt%LaNi5 composite. J. Alloys Compd. 268, 302 1998

    CAS  Article  Google Scholar 

  4. 4

    X. Yao, C.Z. Wu, H. Wang, H.M. Cheng G.Q. Lu: Effects of carbon nanotubes and metal catalysts on hydrogen storage in magnesium nanocomposites. J. Nanosci. Nanotechnol. 6, 494 2006

    CAS  Article  Google Scholar 

  5. 5

    C.Z. Wu, P. Wang, X. Yao, C. Liu, D.M. Chen, G.Q. Lu H.M. Cheng: Effects of SWNT and metallic catalyst on hydrogen absorption/desorption performance of MgH2. J. Phys. Chem. B 109, 22217 2005

    CAS  Article  Google Scholar 

  6. 6

    J.L. Bobet, E. Grigorova, M. Khrussanova, M. Khristov, P. Stefanov, P. Peshev D. Radev: Hydrogen sorption properties of graphite-modified magnesium nanocomposites prepared by ball-milling. J. Alloys Compd. 366, 298 2004

    CAS  Article  Google Scholar 

  7. 7

    J.L. Bobet, M. Kandavel S. Ramaprabhu: Effects of ball-milling conditions and additives on the hydrogen sorption properties of Mg + 5 wt% Cr2O3 mixtures. J. Mater. Res. 21, 1747 2006

    CAS  Article  Google Scholar 

  8. 8

    I. Zaluski, A. Zaluska, P. Tessier, J.O. Strom-Olsen R. Schulz: Nanocrystalline hydrogen absorbing alloys. Mater. Sci. Forum 225, 853 1996

    Article  Google Scholar 

  9. 9

    I. Zaluski, A. Zaluska J.O. Strom-Olsen: Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 288, 217 1999

    Article  Google Scholar 

  10. 10

    P. Wang, A.M. Wang, B.Z. Ding Z.Q. Hu: Mg–Fe1.2Ti (amorphous) composite for hydrogen storage. J. Alloys Compd. 34, 243 2002

    Article  Google Scholar 

  11. 11

    C.X. Shang Z.X. Guo: Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH2. J. Power Source. 129, 73 2004

    CAS  Article  Google Scholar 

  12. 12

    H. Fujii T. Ichikawa: Recent development on hydrogen-storage materials composed of light elements. Phys. Rev. B: Condens. Matter Mater. Phys. 383, 45 2006

    CAS  Google Scholar 

  13. 13

    P. Perez, G. Garces P. Adeva: Mechanical behaviour amorphous Mg–23.5Ni ribbons. J. Alloys Compd. 381, 114 2004

    CAS  Article  Google Scholar 

  14. 14

    T. Spassov U. Koster: Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy. J. Alloys Compd. 279, 279 1998

    CAS  Article  Google Scholar 

  15. 15

    P. Chen, Z. Xiong, J. Luo, J. Lin K.L. Tan: Interaction of hydrogen with metal nitrides and imides. Nature 420, 302 2002

    CAS  Article  Google Scholar 

  16. 16

    Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, T. Noritake, S. Towatab S. Orimo: Hydrogen storage properties of Li–Mg–N–H systems. J. Alloys Compd. 404–406, 396 2005

    Article  Google Scholar 

  17. 17

    W. Luo S. Sickafoose: Thermodynamic and structural characterization of the Mg–Li–N–H hydrogen storage system. J. Alloys Compd. 407, 274 2006

    CAS  Article  Google Scholar 

  18. 18

    X. Yao, C.Z. Wu, A.J. Du, G.Q. Lu, H.M. Cheng, S.C. Smith, J. Zou Y. He: Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage. J. Phys. Chem. B 110, 11679 2006

    Google Scholar 

  19. 19

    T. Vegge: Locating the rate-limiting step for the interaction of hydrogen with Mg(0001) using density-functional theory calculations and rate theory. Phys. Rev. B 70, 035412 2004

    Article  Google Scholar 

  20. 20

    J.K. Norskov A.M. Houmoller: Adsorption and dissociation of H2 on Mg surface. Phys. Rev. Lett. 46, 257 1981

    Article  Google Scholar 

  21. 21

    D.M. Bird, L.J. Clarke, M.C. Payne I. Stich: Dissociation of H2 on Mg(0001). Chem. Phys. Lett. 212, 518 1993

    CAS  Article  Google Scholar 

  22. 22

    A.J. Du, S.C. Smith, X. Yao G.Q. Lu: Hydrogen spillover mechanism on Pd-doped Mg surface revealed by ab initio density functional calculation. J. Am. Chem. Soc. 129, 10201 2007

    CAS  Article  Google Scholar 

  23. 23

    A. San-Martin F.D. Manchester: Phase Diagrams of Binary Magnesium Alloys, edited by A.A. Nayer-Hashemi and J.B. Clark ASM International Materials Park, OH 1988

  24. 24

    L.E.A. Berlouis, E. Cabera, E. Hall-Barientos, P.J. Hall, S.B. Dodd, S. Morris M.A. Imam: Thermal analysis investigation of hydriding properties of nanocrystalline Mg–Ni- and Mg–Fe-based alloys prepared by high-energy ball milling. J. Mater. Res. 16, 45 2001

    CAS  Article  Google Scholar 

  25. 25

    J. Crank: The Mathematics of Diffusion Oxford University Press London 1964

    Google Scholar 

  26. 26

    A. Khawam D.R. Flanagan: Solid-state kinetic models: Basics and mathematical fundamentals. J. Phys. Chem. B 110, 17315 2006

    CAS  Article  Google Scholar 

  27. 27

    A.J. Du, S.C. Smith, X. Yao G.Q. Lu: The role of Ti as a catalyst for the dissociation of hydrogen on a Mg(0001) surface. J. Phys. Chem. B 109, 18037 2005

    CAS  Article  Google Scholar 

  28. 28

    A.J. Du, S.C. Smith, X. Yao G.Q. Lu: The catalytic role of sub-surface carbon in the chemisorption of hydrogen on a Mg(0001) surface: An ab-initio study. J. Phys. Chem. B 110, 1814 2006

    CAS  Article  Google Scholar 

  29. 29

    C.Z. Wu, P. Wang, X. Yao, C. Liu, D.M. Chen, G.Q. Lu H.M. Cheng: Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride. J. Alloys Compd. 414, 259 2006

    CAS  Article  Google Scholar 

  30. 30

    D.S. Sholl: Using density-functional theory to study hydrogen diffusion in metals: A brief overview. J. Alloys Compd. 446–447, 462 2007

    Article  Google Scholar 

  31. 31

    T.R. Jensen, A. Andreasen, T. Vegge, J.W. Andreasen, K. Stahl, A.S. Pedersen, M.M. Nielsen, A.M. Molenbroek F. Besenbacher: Dehydrogenation kinetics of pure and nickel-doped magnesium hydride investigated by in situ time-resolved powder x-ray diffraction. Int. J. Hydrogen Energy 31, 2052 2006

    CAS  Article  Google Scholar 

  32. 32

    A. Andreasen, M.B. Sørensen, R. Burkarl, B. Møller, A.M. Molenbroek, A.S. Pedersen, T. Vegge T.R. Jensen: Dehydrogenation kinetics of air-exposed MgH2/Mg2Cu and MgH2/MgCu2 studied with in situ x-ray powder diffraction. Appl. Phys. A 82, 515 2006

    CAS  Article  Google Scholar 

Download references

Acknowledgment

Financial support from the Australian Research Council is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to X. Yao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yao, X., Zhu, Z., Cheng, H. et al. Hydrogen diffusion and effect of grain size on hydrogenation kinetics in magnesium hydrides. Journal of Materials Research 23, 336–340 (2008). https://doi.org/10.1557/JMR.2008.0063

Download citation