Synthesis of calcium carbonate capsules in water-in-oil-in-water double emulsions


Hollow capsules have been intensively investigated due to their high capacity of encapsulating large quantities of guest molecules, making them promising candidate materials for various encapsulation applications. In this work, CaCO3 hollow capsules were successfully synthesized via an emulsion route. The interior hollow structure of the capsules was confirmed by using scanning electron microscopy and transmission electron microscopy (TEM). The vaterite polymorph of the as-synthesized CaCO3 capsules was determined by using x-ray diffraction, high-resolution TEM, and Fourier transform infrared spectroscopy. A self-assembly model was proposed to explain the formation mechanism of the vaterite capsules. By adjusting experimental parameters such as the internal solution amount and the surfactant amount of the double-emulsion system, the average capsule size could be adjusted accordingly. However, the increase in capsule size was at a compensation of size-uniformity degradation. The capsule size uniformity was then further optimized by increasing the magnetic stirring rate. The resultant vaterite capsules demonstrated biodegradability behavior after immersion in phosphate-buffered saline solution, leading to their promising applications in the area of controlled drug delivery.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14


  1. 1

    S. Mann G.A. Ozin: Synthesis of inorganic materials with complex form. Nature 382, 313 1996

    CAS  Article  Google Scholar 

  2. 2

    A. Kulak, S.R. Hall S. Mann: Single-step fabrication of drug-encapsulated inorganic microspheres with complex form by sonication-induced nanoparticle assembly. Chem. Commun. 5, 576 2004

    Article  Google Scholar 

  3. 3

    F. Caruso, R.A. Caruso H. Möhwald: Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111 1998

    CAS  Article  Google Scholar 

  4. 4

    C.C. Chen, Y.C. Liu, C.H. Wu, C.C. Yeh, M.T. Su Y.C. Wu: Preparation of fluorescent silica nanotubes and their application in gene delivery. Adv. Mater. 17, 404 2005

    CAS  Article  Google Scholar 

  5. 5

    N.W.S. Kam, T.C. Jessop, P.A. Wender H. Dai: Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850 2004

    CAS  Article  Google Scholar 

  6. 6

    M. Thomas A.M. Klibanov: Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 100, 9138 2003

    CAS  Article  Google Scholar 

  7. 7

    T. Yamada, Y. Iwasaki H. Tada: Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nat. Biotechnol. 21, 885 2003

    CAS  Article  Google Scholar 

  8. 8

    Z.Y. Zhong, Y.D. Yin, D. Gates Y.N. Xia: Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv. Mater. 12, 206 2000

    CAS  Article  Google Scholar 

  9. 9

    J.F. Chen, J.X. Wang R.J. Liu: Synthesis of porous silica structures with hollow interiors by templating nanosized calcium carbonate. Inorg. Chem. Commun. 7, 447 2004

    CAS  Article  Google Scholar 

  10. 10

    S. Mandal K.M. Krishnan: CocoreAushell nanoparticles: Evolution of magnetic properties in the displacement reaction. J. Mat. Chem. 17, 372 2007

    CAS  Article  Google Scholar 

  11. 11

    A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch D.A. Weitz: Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science 298, 1006 2002

    CAS  Article  Google Scholar 

  12. 12

    F. Caruso, X.Y. Shi R.A. Caruso: Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles. Adv. Mater. 13, 740 2001

    CAS  Article  Google Scholar 

  13. 13

    Y. Sun Y.N. Xia: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2716 2002

    Google Scholar 

  14. 14

    A.C. Templeton, W.P. Wuelfing R.W. Murray: Monolayer protected cluster molecules. Acc. Chem. Res. 33, 27 2000

    CAS  Article  Google Scholar 

  15. 15

    A.M. Collins, C. Spickermann S. Mann: Synthesis of titania hollow microspheres using non-aqueous emulsions. J. Math. Chem. 13, 1112 2003

    CAS  Article  Google Scholar 

  16. 16

    J.L. Blin, A. Leonard, Z.Y. Yuan, L. Gigot, A. Vantomme, A.K. Cheetham B.L. Su: Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angew. Chem., Int. Ed. Engl. 42, 2872 2003

    CAS  Article  Google Scholar 

  17. 17

    Z.Y. Yuan, T.Z. Ren B.L. Su: Hierarchically mesostructured titania materials with an unusual interior macroporous structure. Adv. Mater. 15, 1462 2003

    CAS  Article  Google Scholar 

  18. 18

    Q. Peng, Y. Dong Y. Li: ZnSe semiconductor hollow microspheres. Angew. Chem., Int. Ed. Engl. 42, 3027 2003

    CAS  Article  Google Scholar 

  19. 19

    Y.H. Yang M.Y. Gao: Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Adv. Mater. 17, 2354 2005

    CAS  Article  Google Scholar 

  20. 20

    D. Walsh, B. Lebeau S. Mann: Morphosynthesis of calcium carbonate (vaterite) microsponges. Adv. Mater. 11, 324 1999

    CAS  Article  Google Scholar 

  21. 21

    T. Hirai, S. Harguchi, I. Komasawa R.J. Davey: Biomimetic synthesis of calcium carbonate particles in a pseudovesicular double emulsion. Langmuir 13, 6650 1997

    CAS  Article  Google Scholar 

  22. 22

    T. Hirai, M. Hodono I. Komasawa: The preparation of spherical calcium phosphate fine particles using an emulsion liquid membrane system. Langmuir 16, 955 2000

    CAS  Article  Google Scholar 

  23. 23

    J.A. Thomas, L. Seton, R.J. Davey C.E. DeWolf: Using a liquid emulsion membrane system for the encapsulation of organic and inorganic substrates within inorganic microcapsules. Chem. Commun. 10, 1072 2002

    Article  Google Scholar 

  24. 24

    JCPDS No. 33-0268. International Center for Diffraction Data: Newton Square, PA, 1966

  25. 25

    F.A. Andersen L. Brecevic: Infrared-spectra of amorphous and crystalline calcium carbonate. Acta Chem. Scand. A 45, 1018 1991

    CAS  Article  Google Scholar 

  26. 26

    S. Raz, S. Weiner L. Addadi: Formation of high-magnesian calcites via an amorphous precursor phase: Possible biological implications. Adv. Mater. 12, 38 2000

    CAS  Article  Google Scholar 

  27. 27

    J.B.A. Walker, R. Heywood S. Mann: Oriented nucleation of CaCO3 from metastable solutions under Langmuir monolayers. J. Mater. Chem. 1, 889 1991

    CAS  Article  Google Scholar 

  28. 28

    S.H. Yu, H. Colfen, J. Hartmann M. Antonietti: Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers. Adv. Funct. Mater. 12, 541 2002

    CAS  Article  Google Scholar 

  29. 29

    D. Rautaray, K. Sinha, S.S. Shankar, S.D. Adyanthaya M. Sastry: Aqueous foams as templates for the synthesis of calcite crystal assemblies of spherical morphology. Chem. Mater. 16, 1356 2004

    CAS  Article  Google Scholar 

Download references


This work was supported by the Faculty Research Committee (FRC), work breakdown structure (WBS) No. R-284-000-050-133, Faculty of Engineering of the National University of Singapore.

Author information



Corresponding author

Correspondence to J.M. Xue.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, G., Ding, J. & Xue, J. Synthesis of calcium carbonate capsules in water-in-oil-in-water double emulsions. Journal of Materials Research 23, 140–149 (2008).

Download citation