In situ synchrotron radiation monitoring of phase transitions during microwave heating of Al–Cu–Fe alloys


The effect of rapid microwave heating has so far been evaluated mainly by comparing the state of materials before and after microwave exposure. Yet, further progress critically depends on the ability to follow the evolution of materials during ultrafast heating in real time. We describe the first in situ time-resolved monitoring of solid-state phase transitions during microwave heating of metallic powders using wide-angle synchrotron radiation diffraction. Single-phase Al–Cu–Fe quasicrystal powders were obtained by microwave heating of nanocrystalline alloy precursors at 650 °C in <20 s.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6


  1. 1

    R. Roy D. Agrawal: The new science of microwave−materials interactions: The role of separated e and h fields and its real world applications in Proceedings of the 6th Symposium on Microwave Applications and Related Fields, November 2–4, 2006, Oyaki-City, Japan

  2. 2

    S. Seal, S.C. Kuiry, P. Georgieva A. Agarwal: Manufacturing nanocomposite parts: Present status and future challenges. MRS Bull. 29(1), 16 2004

    CAS  Article  Google Scholar 

  3. 3

    Z. Shen, Z. Zhao, H. Peng M. Nygren: Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening. Nature 417, 266 2002

    CAS  Article  Google Scholar 

  4. 4

    J.D. Katz: Microwave sintering of ceramics. Annu. Rev. Mater. Sci. 22, 153 1992

    CAS  Article  Google Scholar 

  5. 5

    Materials Research Advisory Board Microwave Processing of Materials National Research Council Publication NMAB-473, National Academy Press 1994

    Google Scholar 

  6. 6

    D.E. Clark, D.C. Folz, C. Folgar M. Mahmoud: Microwave Solutions for Ceramic Engineers The American Ceramics Society ACerS Inc., Westerville, OH 2005

    Google Scholar 

  7. 7

    Yu.V. Bykov, K.I. Rybakov V.E. Semenov: High-temperature microwave processing of materials. J. Phys. D: Appl. Phys. 34, R55 2001

    CAS  Article  Google Scholar 

  8. 8

    A.G. Whittaker, A. Harrison, G.S. Oakley, I.D. Youngson, R.K. Heenan S.M. King: Preliminary experiments on apparatus for in situ studies of microwave-driven reactions by small angle neutron scattering. Rev. Sci. Instrum. 72, 173 2001

    CAS  Article  Google Scholar 

  9. 9

    A. Harrison, R. Ibberson, G. Robb, G. Whittaker, C. Wilson D. Youngson: In situ neutron diffraction studies of single crystals and powders during microwave irradiation. Faraday Discuss. 122, 363 2002

    Article  Google Scholar 

  10. 10

    M.M. Günter, C. Korte, G. Brunauer, H. Boysen, M. Lerch E. Suard: In situ high temperature neutron diffraction study of Sr/Mg-doped lanthanum gallate superionic conductors under microwave irradiation. Z. Anorg. Allg. Chem. 631, 1277 2005

    Article  Google Scholar 

  11. 11

    G.R. Robb, A. Harrison A.G. Whittaker: Temperature-resoved, in-situ powder x-ray diffraction of silver iodide under microwave irradiation. Phys. Chem. Comm. 5, 135 2002

    Google Scholar 

  12. 12

    S. Vaucher, J-M. Catala-Civera, A. Sarua, J. Pomeroy M. Kuball: Phase selectivity of microwave heating evidenced by Raman spectroscopy. J. Appl. Phys. 99, 113505 2006

    Article  Google Scholar 

  13. 13

    A. Nesbitt, P. Navabpour, B. Degamber, C. Nightingale, T. Mann, G. Fernando R.J. Day: Development of a microwave calorimeter for simultaneous thermal analysis, infrared spectroscopy and dielectric measurements. Meas. Sci. Technol. 15, 2313 2004

    CAS  Article  Google Scholar 

  14. 14

    S.A. Freeman, J.H. Booske R.F. Cooper: Microwave field enhancement of charge transport in sodium chloride. Phys. Rev. Lett. 74, 2042 1995

    CAS  Article  Google Scholar 

  15. 15

    J.H. Booske, R.F. Cooper S.A. Freeman: Microwave enhanced reaction kinetics in ceramics. Mater. Res. Innovations 1, 77 1997

    CAS  Article  Google Scholar 

  16. 16

    K.I. Rybakov V.E. Semenov: Mass transport in ionic crystals induced by the ponderomotive action of a high-frequency electric field. Phys. Rev. B 52, 3030 1995

    CAS  Article  Google Scholar 

  17. 17

    J. Cheng, R. Roy D. Agrawal: Experimental proof of major role of magnetic losses in microwave heating of metal and metallic composites. J. Mater. Sci. Lett. 20, 1561 2001

    CAS  Article  Google Scholar 

  18. 18

    R. Roy, P.D. Peelamedu, J.P. Cheng, C. Grimes D. Agrawal: Major phase transformations and magnetic property changes caused by electromagnetic fields at microwave frequencies. J. Mater. Res. 17(12), 3008 2002

    CAS  Article  Google Scholar 

  19. 19

    R. Roy, P.D. Peelamedu, L. Hurtt, J.P. Cheng D. Agrawal: Definitive experimental evidence for microwave effects: Radically new effects of separated E and H fields, such as decrystallization of oxides in seconds. Mater. Res. Innovations 6, 128 2002

    CAS  Article  Google Scholar 

  20. 20

    R. Roy, D. Agrawal, J. Cheng S. Gedevanshvili: Full sintering of powdered-metal bodies in a microwave field. Nature 399, 668 1999

    CAS  Article  Google Scholar 

  21. 21

    D. Shechtman, I. Blech, D. Gratias J. Cahn: Metallic phase with long range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 1984

    CAS  Article  Google Scholar 

  22. 22

    H-R. Trebin: ed. Quasi-crystals Wiley-VCH Weinheim 2003

  23. 23

    Chr. Janot: The properties and applications of quasi-crystals. Europhys. News 27, 60 1996

    CAS  Article  Google Scholar 

  24. 24

    D.J. Sordelet, J.M. Dubois ed. Quasi-crystals. MRS Bull. 22 (11), 1997

    Google Scholar 

  25. 25

    J.M. Dubois: Useful Quasi-crystals World Scientific Publishing Singapore 2003

    Google Scholar 

  26. 26

    E. Huttunen-Saarivirta: Microstructure, fabrication and properties of quasi-crystalline Al–Cu–Fe alloys: A review. J. Alloys Compd. 363, 150 2004

    CAS  Article  Google Scholar 

  27. 27

    V.V. Tcherdyntsev, S.D. Kaloshkin, A.I. Salimon, E.A. Leonova, J. Eckert, F. Schurack, V.D. Rogozin, S.P. Pisarev Y.P. Trykov: Al–Cu–Fe quasi-crystalline phase formation by mechanical alloying. Mater. Manufact. Proc. 17, 825 2002

    CAS  Article  Google Scholar 

  28. 28

    R. Nicula, M. Stir, F. Turquier E. Burkel: Single-phase bulk Al–Cu–Fe quasi-crystals by field-assisted sintering. Mater. Sci. Eng., A (doi:10.1016/j.msea.2007.01.163, in press)

  29. 29

    D.C. Dube, P.D. Ramesh, J. Cheng, M.T. Lanagan, D. Agrawal R. Roy: Experimental evidence of redistribution of fields during processing in a high-power microwave cavity. Appl. Phys. Lett. 85(16), 3632 2004

    CAS  Article  Google Scholar 

  30. 30

    B.D. Patterson, Ch. Brönnimann, D. Maden, F. Gozzo, A. Groso, B. Schmitt, M. Stampanoni P.R. Wilmott: The materials science beamline at the Swiss Light Source. Nucl. Instrum. Methods Phys. Rev., Sect. B 238, 224 2005

    CAS  Article  Google Scholar 

  31. 31

    B. Schmitt, Ch. Brönnimann, E.F. Eikenberry, F. Gozzo, C. Hörmann, R. Horisberger B. Patterson: Mythen detector system. Nucl. Instrum. Methods Phys. Rev., Sect. A 501, 267 2003

    CAS  Article  Google Scholar 

  32. 32

    J.W. Cahn, D. Shechtman D. Gratias: Indexing of icosahedral quasiperiodic crystals. J. Mater. Res. 1, 13 1986

    CAS  Article  Google Scholar 

  33. 33

    E. Otterstein, R. Nicula, J. Bednarcik, M. Stir E. Burkel: In situ time-resolved x-ray diffraction investigation of the ω → ψ transition in Al–Cu–Fe quasi-crystal-forming alloys. Mater. Sci. Forum 558-559, 943 2007

    Google Scholar 

  34. 34

    Chr. Janot: Quasi-crystals: A Primer Oxford University Press New York 1992

    Google Scholar 

  35. 35

    M. Quinquandon, A. Quivy, J. Devaud, F. Faudot, S. Lefebvre, M. Bessiere Y. Calvayrac: Quasi-crystal and approximant structures in the Al–Cu–Fe system. J. Phys.: Condens. Matter 8, 2487 1996

    Google Scholar 

  36. 36

    A. Quivy, S. Lefebvre, J.L. Soubeyroux, A. Filhol R.M. Ibberson: High-resolution time-of-flight measurements of the lattice parameter and thermal expansion of the icosahedral phase Al62Cu25.5Fe12.5. J. Appl. Crystallogr. 27, 1010 1994

    CAS  Article  Google Scholar 

  37. 37

    A.M. Korsunsky, A.I. Salimon, I. Pape, A.M. Polyakov A.N. Fitch: The thermal expansion coefficient of mechanically alloyed Al–Cu–Fe quasi-crystalline powders. Scripta Mater. 44, 217 2001

    CAS  Article  Google Scholar 

Download references


Radu Nicula gratefully acknowledges Prof. Dr. Eberhard Burkel and Dr. Manuela Stir (Rostock University, Germany) for continuous support.

Author information



Corresponding author

Correspondence to Sébastien Vaucher.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vaucher, S., Nicula, R., Català-Civera, JM. et al. In situ synchrotron radiation monitoring of phase transitions during microwave heating of Al–Cu–Fe alloys. Journal of Materials Research 23, 170–175 (2008).

Download citation