Pyroelectricity versus conductivity in soft lead zirconate titanate (PZT) ceramics

Abstract

The electrical behavior of modified soft lead zirconate titanate (PZT) ceramics has been studied as a function of temperature at different direct current (dc) electric fields and grain sizes. As ferroelectrics, such as PZT, are highly polarizable materials, poling, depolarization, and electric conduction contribute to the total electrical current, which leads to anomalous electrical behavior as a function of temperature. The PZT appeared to have a high pyroelectric coefficient, and it was found that the displacement current hides the conduction current near room temperature. The (long-time) steady-state electrical resistivity of the soft PZT used has a typical, relatively high value of 3.6 × 1012 Ω·cm near room temperature. The resistivity above the Curie temperature was two orders of magnitude lower than the room temperature. The resistivity decreases with increasing grain size probably due to the increased Pb vacancy concentration resulting as a consequence of a higher sintering temperature. The values of activation energies suggest that the charge carriers at high temperature are mainly oxygen vacancies. At intermediate temperature, the electrical behavior is controlled by the counteracting effect of depolarization and conduction. Considering the pyroelectric effect and the conduction, it was thus possible to explain the electrical behavior of this soft PZT ceramic over the temperature range considered.

This is a preview of subscription content, access via your institution.

TABLE I
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
TABLE II
FIG. 6
FIG. 7
TABLE III
FIG. 8

References

  1. 1.

    B. Jaffe, W.R. Cook, and H. Jaffe: Piezoelectric Ceramics (Academic Press, New York, 1971).

    Google Scholar 

  2. 2.

    D.A. Northrop: Vaporization of lead zirconate–lead titanate materials. J. Am. Ceram. Soc. 50, 441 (1967).

    CAS  Article  Google Scholar 

  3. 3.

    R.L. Holman and R.M. Fulrath: Intrinsic nonstoichiometry in single-phase Pb(Zr0.5Ti0.5)O3. J. Am. Ceram. Soc. 55, 192 (1972).

    CAS  Article  Google Scholar 

  4. 4.

    R. Gerson: Variation in ferroelectric characteristics of lead zirconate titanate ceramics due to minor chemical modifications. J. Appl. Phys. 31, 188 (1960).

    CAS  Article  Google Scholar 

  5. 5.

    R. Gerson and H. Jaffe: Electrical conductivity in lead titanate zirconate ceramics. J. Phys. Chem. Solids 24, 979 (1963).

    CAS  Article  Google Scholar 

  6. 6.

    M. Takahashi: Electrical resistivity of lead zirconate titanate ceramics containing impurities. Jpn.J. Appl. Phys. 10, 643 (1971).

    CAS  Article  Google Scholar 

  7. 7.

    L. Wu, T-S. Wu, C-C. Wei, and H-C. Liu: Piezoelectric properties of modified PZT ceramics. J. Phys. E 16, 2813 (1983).

    CAS  Article  Google Scholar 

  8. 8.

    H.N. Al-Shareef and D. Dimos: Leakage and reliability characteristics of lead zirconate titanate thin-film capacitors. J. Am. Ceram. Soc. 80, 3127 (1997).

    CAS  Article  Google Scholar 

  9. 9.

    M.M. Nodliisky, S.D. Toshev, and T.K. Vasileva: Electric conductivity and dielectric properties of ferroelectric PZT ceramics doped with Cr2O3. Phys. Status Solidi 54, K145 (1979).

  10. 10.

    N. Setter: Piezoelectric Materials in Devices (Ceramics Laboratory, EPFL, 2003).

    Google Scholar 

  11. 11.

    R. Waser, T. Baiatu, and K. Härdtl: DC electrical degradation of perovskite-type titanates: II. Single crystals. J. Am. Ceram. Soc. 73, 1645 (1990).

    CAS  Article  Google Scholar 

  12. 12.

    T.M. Kamel, F.X.N.M. Kools, and G. de With: Poling of soft piezoceramic PZT. J. Eur. Ceram. Soc. 27, 2471 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    H. Hu and S.B. Krupanidhi: Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr,Ti)O3 thin films. J. Mater. Res. 9, 1484 (1994).

    CAS  Article  Google Scholar 

  14. 14.

    A.K. Jonscher: Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1983).

    Google Scholar 

  15. 15.

    W.J. Merz: Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys. Rev. 95, 690 (1954).

    CAS  Article  Google Scholar 

  16. 16.

    M.E. Lines and A.M. Glass: Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).

    Google Scholar 

  17. 17.

    Z. Zhu, N. Zheng, G. Li, and Q. Yin: Dielectric and electrical conductivity properties of PMS-PZT ceramics. J. Am. Ceram. Soc. 89, 717 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    J.J. Dih, D.R. Biswas, and R.M. Fulrath: Effect of voids on the electrical resistivity in lead zirconate titanate ceramics. J. Mater. Sci. 16, 3220 (1981).

    CAS  Article  Google Scholar 

  19. 19.

    L.L. Hench and J.K. West: Principles of Electronic Ceramics (Wiley, New York, 1990). p. 139.

    Google Scholar 

  20. 20.

    F.A. Kröger and H.J. Vink: Solid State Physics, Vol. 3, edited by F. Seitz and D. Turnbull (Academic Press, New York, 1956). p. 307.

  21. 21.

    T.M. Kamel and G. de With, Grain size effect on the poling of soft Pb(Zr,Ti)O3 ferroelectric ceramics. J. Eur. Ceram. Soc. (2007, in press).

    Google Scholar 

  22. 22.

    J.J. Dih and R.M. Fulrath: Electrical conductivity in lead zirconate–titanate ceramics. J. Am. Ceram. Soc. 61, 448 (1978).

    CAS  Article  Google Scholar 

  23. 23.

    B.A. Boukamp, M.T.N. Pham, D.H.A. Blank, and H.J.M. Bouwmeester: Ionic and electronic conductivity in lead–zirconate–titanate (PZT). Solid State Ionics 170, 239 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    D. Dimos, R.W. Schwartz, and S.J. Lockwood: Control of leakage resistance in Pb(Zr,Ti)O3 thin films by donor doping. J. Am. Ceram. Soc. 77, 3000 (1994).

    CAS  Article  Google Scholar 

  25. 25.

    E. Furman, W. Gu, and L.E. Cross: Electrical Properties of PLZT 9.5/65/35 Ceramics, IEEE Int. Symp. Appl. Ferroelectr. 7, 1991, p. 588.

    Google Scholar 

  26. 26.

    A.P. Barranco, F.C. Pinar, and O.P. Martinez: Pyroelectricity and mechanisms of conductivity in PbZr0.53Ti0.47O3 + 2.5 molau] La2O3 ferroelectric ceramics. J. Mater. Sci. Lett. 20, 1439 (2001).

    CAS  Article  Google Scholar 

  27. 27.

    N.J. Donnelly, T.R. Shrout, and C.A. Randall: Addition of a Sr, K, Nb (SKN) combination to PZT(53/47) for high strain applications. J. Am. Ceram. Soc. 90, 490 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    J. Lappalainen and V. Lantto: Extrinsic conductivity in ferroelectric PZT film capacitors made by laser ablation deposition. Phys. Scr. T79, 220 (1999).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. de With.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kamel, T.M., de With, G. Pyroelectricity versus conductivity in soft lead zirconate titanate (PZT) ceramics. Journal of Materials Research 22, 3448–3454 (2007). https://doi.org/10.1557/JMR.2007.0438

Download citation