Synthesis, characterization, and base-catalytic performance of ordered mesoporous aluminophosphate oxynitride materials


The synthesis, physicochemical characterization, and catalytic evaluation of ordered mesoporous aluminophosphate oxynitride (MAPN) materials are presented here. The solid-base materials were prepared through treating aluminophosphate with an ordered mesostructure with ammonia at high temperatures. The MAPNs are well ordered, and possess high surface and pore volume. The amount of nitrogen incorporated increased with prolonged nitridation times. At the same time, the intensity of basicity is consistent with the nitrogen content, which is affirmed by Knoevenagel condensation reaction. The obtained ordered MAPN materials also possess acidity. The easy preparation and control of the nitrogen content of ordered MAPN materials, providing acidity and basicity, make them attractive as alternatives to a solid-base or acid-base catalyst, especially for the interactions of large molecules.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1.

    H. Hattori: Heterogeneous basic catalysis. Chem. Rev. 95, 537 (1995).

    CAS  Article  Google Scholar 

  2. 2.

    D. Barthomeuf: Basic zeolites: Characterization and uses in adsorption and catalysis. Catal. Rev. 38, 521 (1996).

    Article  Google Scholar 

  3. 3.

    J. Weitkamp, M. Hunger, and U. Rymsa: Base catalysis on microporous and mesoporous materials: Recent progress and perspectives. Microporous Mesoporous Mater. 48, 255 (2001).

    CAS  Article  Google Scholar 

  4. 4.

    P.W. Lednor: Synthesis, stability, and catalytic properties of high surface area silicon oxynitride and silicon carbide. Catal. Today 15, 243 (1992).

    CAS  Article  Google Scholar 

  5. 5.

    P.W. Lednor and R. de Ruiter: The use of a high area silicon oxynitride as a solid, basic catalyst. J. Chem. Soc., Chem. Commun. 1625 (1991).

    Google Scholar 

  6. 6.

    P.W. Lednor, R. de Ruiter, and K.A. Emeis: Characterization of high surface area silicon oxynitrides, in Better Ceramics Through Chemistry V, edited by M.J. Hampden-Smith, W.G. Klemperer, and C.J. Brinker (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992). p.801.

    Google Scholar 

  7. 7.

    T. Blasco, A. Corma, L. Fernandez, V. Fornes, and R. Guil-Lopez: Magic angle spinning NMR investigations on amorphous aluminophosphate oxynitrides. Phys. Chem. Chem. Phys. 1, 4493 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    M.J. Climent, A. Corma, V. Fornes, A. Frau, R. Guil-Lopez, S. Iborra, and J. Primo: Aluminophosphates oxynitrides as base catalysts: Nature of the base sites and their catalytic implications. J. Catal. 163, 392 (1996).

    CAS  Article  Google Scholar 

  9. 9.

    P. Grange, P. Bastians, R. Conanec, R. Marchand, and Y. Laurent: Influence of nitrogen content of a new aluminophosphate oxynitride catalyst: AlPON in Knoevenagel condensation. Appl. Catal., A 114, L191 (1994).

  10. 10.

    S. Delsarte, M.A. Centeno, and P. Grange: Nitrided galloaluminophosphates “AlGaPON”: Influence of the nitridation time on the nature and the stability of surface nitrogenous species. J. Non- Cryst. Solids 297, 189 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    N. Fripiat, V. Parvulescu, V.I. Parvulescu, and P. Grange: Role of nitrogen on the acid-base properties of zirconophosphate (ZrPON) oxynitride catalysts. Appl. Catal., A 181, 331 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    N. Fripiat, M.A. Centeno, and P. Grange: Identification and stability of the nitrogenous species in zirconium phosphate oxynitride catalysts. Chem. Mater. 11, 1434 (1999).

    CAS  Article  Google Scholar 

  13. 13.

    N. Fripiat and P. Grange: Synthesis and characterization of a novel zirconophosphate oxynitride catalyst. J. Chem. Soc., Chem. Commun. 1409 (1996).

    Google Scholar 

  14. 14.

    S. Delsarte, V. Peltier, Y. Laurent, and P. Grange: X-ray photoelectron study of new mixed oxynitrides “AlGaPON”. J. Eur. Ceram. Soc. 18, 1287 (1998).

    CAS  Article  Google Scholar 

  15. 15.

    V. Peltier, R. Conanec, R. Marchand, Y. Laurent, S. Delsarte, E. Guéguen, and P. Grange: A novel family of mixed gallium aluminium phosphorus oxynitrides: Their synthesis, characterization and utilization in heterogeneous catalysis. Mater. Sci. Eng., B 47, 177 (1997).

    Article  Google Scholar 

  16. 16.

    D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548 (1998).

    CAS  Article  Google Scholar 

  17. 17.

    H. Chen, J. Shi, Y. Li, J. Yan, Z. Hua, H. Chen, and D. Yan: A new method for the synthesis of highly dispersive and catalytically active platinum nanoparticles confined in mesoporous zirconia. Adv. Mater. 15, 1078 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    D.M. Antonelli: Synthesis of highly ordered macro-mesoporous niobium oxide molecular sieves. Microporous Mesoporous Mater. 30, 315 (1999).

    CAS  Article  Google Scholar 

  19. 19.

    U. Ciesla, S. Schacht, G.D. Stucky, K.K. Unger, and F. Schüth: Formation of a porouszirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angew. Chem., Int. Ed. Engl. 35, 541 (1996).

    CAS  Article  Google Scholar 

  20. 20.

    H. Yang, A. Kupeman, N. Coombs, S. Mamiche-Afra, and G.A. Ozin: Synthesis of oriented films of mesoporous silica on mica. Nature 379, 703 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    K. Niesz, P. Yang, and G.A. Somorjai: Sol-gel synthesis of ordered mesoporous alumina. Chem. Commun. 1986 (2005).

    Google Scholar 

  22. 22.

    F. Schüth: Non-siliceous mesostructured and mesoporous materials. Chem. Mater. 13, 3184 (2001).

    Article  CAS  Google Scholar 

  23. 23.

    J.E. Haskouri, S. Cabrera, F.F. Sapiña, J. Latorre, C. Guillen, A. Beltrán-Porter, M.D. Marcos, and P. Amorós: Ordered mesoporous silicon oxynitrides. Adv. Mater. 13, 192 (2001).

    Article  Google Scholar 

  24. 24.

    Y. Xia and R. Mokaya: Highly ordered mesoporous silicon oxynitride materials as base catalysts. Angew. Chem., Int. Ed. Engl. 42, 2639 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    Y. Xia and R. Mokaya: Ordered mesoporous MCM-41 silicon oxynitride solid base materials with high nitrogen content: Synthesis, characterisation and catalytic evaluation. J. Mater. Chem. 14, 2507 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    K. Wan, Q. Liu, and C. Zhang: Synthesis of highly ordered mesoporous silicon oxynitride with high nitrogen content. Chem. Lett. (Jpn.). 32, 362 (2003).

    CAS  Article  Google Scholar 

  27. 27.

    J. Wang and Q. Liu: Mesoporous silicon oxynitride thin films. Chem. Commun. 8, 900 (2006).

    Article  CAS  Google Scholar 

  28. 28.

    C. Zhang, Q. Liu, and Z. Xu: Synthesis and characterization of non-crystalline mesoporous silicon oxynitride MCM-41 with high nitrogen content. J. Non-Cryst. Solids 351, 1377 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    J. Wang and Q. Liu: Synthesis and characterization of ordered mesoporous SiOxNy thin films with different nitrogen contents. Nanotechnology 17, 2828 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    J. Wang and Q. Liu: Structural change and characterization in nitrogen-incorporated SBA15 oxynitride mesoporous materials via different thermal history. Microporous Mesoporous Mater. 83, 225 (2005).

    CAS  Article  Google Scholar 

  31. 31.

    J. Wang and Q. Liu: Nitrogen loss and structural change of nitrogen- incorporated SBA-15 mesoporous materials under different treatment conditions. J. Mater. Res. 20, 2296 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    K. Wan, Q. Liu, C. Zhang, and J. Wang: The basicity and catalytic activity of ordered mesoporous silicon nitride oxide. Bull. Chem. Soc. Jpn. 77, 1409 (2004).

    CAS  Article  Google Scholar 

  33. 33.

    B. Tian, X. Liu, B. Tu, C. Yu, J. Fan, L. Wang, S. Xie, G.D. Stucky, and D. Zhao: Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nat. Mater. 2, 259 (2003).

    Article  CAS  Google Scholar 

  34. 34.

    L. Wang, B. Tian, J. Fan, X. Liu, H. Yang, C. Yu, B. Tu, and D. Zhao: Block copolymer templating syntheses of ordered large-pore stable mesoporous aluminophosphates and Fealuminophosphate based on an “acid–base pair” route. Microporous Mesoporous Mater. 67, 123 (2004).

    CAS  Article  Google Scholar 

  35. 35.

    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemieniewska: Reporting physisorption data for gas /solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985).

    CAS  Article  Google Scholar 

  36. 36.

    J. Benítez, A. Díaz, Y. Laurent, and J. Odriozola: Study of aluminophosphate oxynitride (AlPON) materials by x-ray photoelectron (XPS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS). J. Mater. Chem. 8, 687 (1998).

    Article  Google Scholar 

  37. 37.

    J. Benítez, A. Díaz, Y. Laurent, and J.A. Odriozola: Characterisation, surface hydrolysis and nitrogen stability in aluminophosphate oxynitride (AlPON) catalysts. Appl. Catal., A 176, 177 (1999).

    Article  Google Scholar 

  38. 38.

    F. Marquez, R. Guil-López, V. Fornés, and A. Corma: First evidences on the stability of nitride species in ALPON catalysts. Catal. Commun. 1, 21 (2000).

    CAS  Article  Google Scholar 

  39. 39.

    M.A. Centeno, M. Debois, and P. Grange: DRIFTS study of platinum aluminophosphate oxynitride catalysts. J. Phys. Chem. B 102, 6835 (1998).

    CAS  Article  Google Scholar 

  40. 40.

    J. Benítez, A. Díaz, Y. Laurent, and J. Odriozola: CO2 adsorption and surface basicity evaluation of aluminophosphate oxynitride (AlPON). Catal. Lett. 54, 159 (1998).

    Article  Google Scholar 

  41. 41.

    R. Marchand, D. Agliz, L. Boukbir, and A. Quemerais: Characterization of nitrogen containing phosphate glasses by x-ray photoelectron spectroscopy. J. Non-Cryst. Solids 103, 35 (1988).

    CAS  Article  Google Scholar 

  42. 42.

    R.K. Brow, M.R. Reidmeyer, and D.E. Day: Oxygen bonding in nitrided sodium- and lithium-metaphosphate glasses. J. Non-Cryst. Solids 99, 178 (1988).

    CAS  Article  Google Scholar 

  43. 43.

    M.J. Climent, A. Corma, R. Guil-Lopez, and S. Iborra: Aluminophosphates oxynitrides as base catalysts for the production of dicyanomethylene derivative dyes. Catal. Lett. 74, 161 (2001).

    CAS  Article  Google Scholar 

  44. 44.

    J.S. Bradley, O. Vollmer, R. Rovai, U. Specht, and F. Lefebvre: High surface area silicon imidonitrides: A new class of microporous solid base. Adv. Mater. 10, 938 (1998).

    CAS  Article  Google Scholar 

  45. 45.

    H.M. Wiame, C.M. Cellier, and P. Grange: Aluminovanadate oxynitride catalyst: Proposition for the basic site. J. Phys. Chem. B 104, 591 (2000).

    CAS  Article  Google Scholar 

  46. 46.

    M. Hassan Zahedi-Niaki, S.M. Javaid Zaidi, and S. Kaliaguine: Acid properties of titanium aluminophosphate molecular sieves. Microporous Mesoporous Mater. 32, 251 (1999).

    CAS  Article  Google Scholar 

Download references


We would like to thank the National Natural Science Foundation of China (Grant No. 50372080) for financial support. We also would like to thank Mr. Manjiang Dong for N2 sorption measurements.

Author information



Corresponding author

Correspondence to Qian Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, J., Liu, Q. Synthesis, characterization, and base-catalytic performance of ordered mesoporous aluminophosphate oxynitride materials. Journal of Materials Research 22, 3330–3337 (2007).

Download citation