Preparation and characteristics of novel poly-L-lactide/β-calcium metaphosphate fracture fixation composite rods


A kind of novel poly-L-lactide (PLLA)/β-calcium metaphosphate (β-CMP) fracture-fixation composite rod was prepared by a two-step compression-molding method. The in vitro bioactivity of the composite rod was evaluated by investigating the effects of dissolved products from the composite rod on osteoblasts. In addition, the in vitro biocompatibility of the composite rod was evaluated by an osteoblast adhesion-and-proliferation assay. The products from composite rod dissolution significantly promoted cell growth. Furthermore, osteoblasts adhered and spread well on the rod. This PLLA/β-CMP composite rod has potential applications for clinical use following the assessment of adaptation during in vivo studies.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7


  1. 1.

    J.W. Ager III, G. Balooch, and R.O. Ritchie: Fracture, aging, and disease in bone. J. Mater. Res. 21, 1878 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    W.C. Head, D.J. Bauk, and R.H. Emerson: Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin. Orthop. Rel. Res. 311, 85 (1995).

    Google Scholar 

  3. 3.

    Q-L. Hu, B-Q. Li, M. Wang, and J-C. Shen: Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: A potential material as internal fixation of bone fracture. Biomaterials 25, 779 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    S. Hasegawa, S. Ishii, J. Tamura, T. Furukawa, M. Neo, Y. Matsusue, Y. Shikinami, M. Okuno, and T. Nakamura: A 5–7 year in vivo study of high-strength hydroxyapatite/poly (L-lactide) composite rods for the internal fixation of bone fractures. Biomaterials 27, 1327 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    O. Böstman and H. Pihlajamäki: Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: A review. Biomaterials 21, 2615 (2000).

    Article  Google Scholar 

  6. 6.

    J.C. Middleton and A.J. Tipton: Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21, 2335 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    T. Furukawa, Y. Matsusue, T. Yasunaga, Y. Shikinami, M. Okuno, and T. Nakamura: Biodegradation behavior of ultra-high-strength hydroxyapatite/poly (L-lactide) composite rods for internal fixation of bone fractures. Biomaterials 21, 889 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Shikinami, Y. Matsusue, and T. Nakamura: The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly L-lactide (F-u-HA/PLLA). Biomaterials 26, 5542 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Jung, S.S. Kim, Y.H. Kim, S.H. Kim, B.S. Kim, S. Kim, C.Y. Choi, and S.H. Kim: A poly (lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials 26, 6314 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    K-S. Jaw: The effects on the devitrification mechanism for a certain composition of CaO/P2O5 glass with additives of HAp, TCP, and β-CaP2O6 whisker. J. Therm. Anal. Cal. 83, 151 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    R.C. Thomson, M.J. Yaszemski, J.M. Powers, and A.G. Mikos: Hydroxyapatite fiber reinforced poly (a-hydroxy ester) foams for bone regeneration. Biomaterials 19, 1935 (1998).

    CAS  Article  Google Scholar 

  12. 12.

    N.C. Bleach, S.N. Nazhat, K.E. Tanner, M. Kellomäki, and P. Törmälä: Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate polylactide composites. Biomaterials 23, 1579 (2002).

    CAS  Article  Google Scholar 

  13. 13.

    A.M. Ambrosio, J.S. Sahota, Y. Khan, and C.T. Laurencin: A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. J. Biomed. Mater. Res. Appl. Biomater. 58, 295 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    S.H. Lee, B-S. Kim, S.H. Kim, S.I. Jeong, S.W. Kang, and Y.H. Kim: Thermally produced biodegradable scaffolds for cartilage tissue engineering. Macromol. Biosci. 4, 802 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    L. Chen, L. Liao, G-F. Yin, A-Z. Chen, and X-M. Pu: Preparation and strength properties of poly-L-lactide(PLLA)/β-calcium metaphosphate (β-CMP) composite for internal fracture fixation. J. Funct. Mater. 37, 1466 (2006).

    CAS  Google Scholar 

  16. 16.

    S.L. Ishaug, M.J. Yaszemski, R. Bizios, and A.G. Mikos: Osteoblast function on synthetic biodegradable polymers. J. Biomed. Mater. Res. 28, 1445 (1994).

    CAS  Article  Google Scholar 

  17. 17.

    R.A. Hirst, H. Yesilkaya, E. Clitheroe, A. Rutman, N. Dufty, T.J. Mitchell, C.O. Callaghan, and P.W. Andrew: Sensitivities of human monocytes and epithelial cells to pneumolysin are different. Infect. Immun. 70, 1017 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    Y. Shikinami and M. Okuno: Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-Llactide (PLLA): Part I. Basic characteristics. Biomaterials 20, 859 (1999).

    CAS  Article  Google Scholar 

  19. 19.

    L.L. Hench: Bioceramics. J. Am. Ceram. Soc. 81, 1705 (1998).

    CAS  Article  Google Scholar 

Download references


Financial support by the Chinese National 863 Hi-tech Research Program (2002AA326080) and the Fund for Excellent Youth Teachers of the Education Ministry of China (2002123) are gratefully acknowledged. All of the tests in this article were performed by the Analytical and Testing Center of Sichuan University (Chengdu, People’s Republic of China).

Author information



Corresponding author

Correspondence to Guang-Fu Yin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liao, L., Chen, L., Chen, AZ. et al. Preparation and characteristics of novel poly-L-lactide/β-calcium metaphosphate fracture fixation composite rods. Journal of Materials Research 22, 3324–3329 (2007).

Download citation